Purchase Solution

Resistance of aluminum jumping ring

Not what you're looking for?

Ask Custom Question

Assume you have a solenoid with a diameter of 4.0 cm and 2900 turns per meter, with an impedance of 0.70. An iron core consisting of a bundle of wires is placed in the core. The core has an effective susceptibility of 10 (rather than 1000, for this is based on experimental results). An aluminum ring of a mass of 23 grams (1.4 cm length and inside diameter of 5.7cm) and thickness of 0.33 cm is placed around the protruding core. It operates at 120 V(rms), 60 Hz household ac.

If all of the flux from the solenoid passes through the ring, calculate that flux as a function of time. Find the induced emf from the changing flux.

Calculate the resistance of the ring, using a value of 3.3 x 10^(-8) ohm/m for the resistivity of the aluminum, and from it, find the current in the ring.

Purchase this Solution

Solution Summary

The solution discusses the resistance of aluminum jumping ring.

Solution Preview

Solution:

Magnetic flux density B is produced by a solenoid wound, with n turns per unit length and current I passing through. It is given by: B = ?0?rnl (1)
This is where ?0 = permeability of free space and ?r = relative permeability of the core.

Furthermore, ?r = 1 + ?m = 1 + 10 = 11 (The susceptibility ?m of the core is given as 10)

The voltage applied to the solenoid is 120 V (rms), 60 Hz. Hence, the peak voltage is V0 = ?2 x 120 = 169.7 V. The applied voltage V = V0sin(2?f)t = 169.7sin377t. The magnitude of current I, through the solenoid, is ...

Purchase this Solution


Free BrainMass Quizzes
Introduction to Nanotechnology/Nanomaterials

This quiz is for any area of science. Test yourself to see what knowledge of nanotechnology you have. This content will also make you familiar with basic concepts of nanotechnology.

Basic Physics

This quiz will test your knowledge about basic Physics.

Classical Mechanics

This quiz is designed to test and improve your knowledge on Classical Mechanics.

The Moon

Test your knowledge of moon phases and movement.

Intro to the Physics Waves

Some short-answer questions involving the basic vocabulary of string, sound, and water waves.