Explore BrainMass

Explore BrainMass

    Continuous Stirred Tank Reactor (CSTR) : Flow rate and Reactor Volume

    This content was COPIED from BrainMass.com - View the original, and get the already-completed solution here!

    The liquid phase reactions
    a. A+B--->C
    b. A+B--->D
    are carried out in a perfectly insulated CSTR. The desired reaction (a) is first order in A and zero order in B, while the undesired reaction (b) is zero order in A and first order in B. The feed rate is equimolar in A and B. Species A enters the reactor at a temperature of 100 deg C and species B enters at a temperature of 50 deg C. The operating temperature of the reactor is 400 K. The molar flow rate of A entering the reactor is
    60 mol/min: CpA=20cal/(mol K), CpB=30cal/(mol K), CpD=50cal/(mol K), and
    CpU=40cal/(mol K). CA0=0.01 M

    for a: delta Hrxn = -3000 cal/mol of A at 300K
    Ka= 1000e^-2000/T min^-1 where T is in K
    For b: delta Hrxn = -5000 cal/mol of A at 300 K
    Kb= 2000e^-3000/T Min^-1

    1. What will be the exiting molar flow rate of C and D from the reactors?
    2. What is the CSTR reactor volume for the conditions specified?

    © BrainMass Inc. brainmass.com October 9, 2019, 7:46 pm ad1c9bdddf

    Solution Summary

    Flow rate and reactor volume for a Continuous Stirred Tank Reactor (CSTR) are calculated.