Explore BrainMass
Share

# Role of sensitivity analysis in Linear Programming

This content was COPIED from BrainMass.com - View the original, and get the already-completed solution here!

1. Discuss the role of sensitivity analysis in Linear Programming. Under what circumstances is it needed, and under what conditions do you think it is necessary?

2. A linear program has a maximum profit of \$600. One constraint in this problem is 4X + 2Y <= 80. Using a computer we find the dual price for this constraint is 3, and there is a lower bound of 75 and an upper bound of 100. Explain what this means.
3. The seasonal yield of olives in a Piraeus, Greece, vineyard is greatly influenced by a process of branch pruning. If olive trees are pruned every two weeks, output is increased. The pruning process, however, requires considerably more labor than permitting olives to grow on their own and results in a smaller olive size. It also, though, permits olive trees to be spaced closer together. The yield of 1 barrel of olives by pruning requires 5 hours of labor and 1 acre of land. the production of a barrel of olives by the normal process requires only 2 labor hours but takes 2 acres of land. An olive grower has 250 hours of labor available and a total of 150 acres for growing. Because of the olive size difference, a barrel of olives produced on pruned trees sells for \$20, whereas a barrel of regular olives has a market price of \$30. The grower has determined that because of uncertain demand, no more than 40 barrels of pruned olives should be produced.

Use the above information to answer the following questions. You do not need to solve the problem but complete the following:

a. State, in words, the objective for the vineyard
b. Define all decision variables along with their proper units
c. Write, mathematically, the objective function
d. State, in words, the constraints faced by the vineyard
e. Write, mathematically, the constraints faced by the vineyard

4. Consider the following LP problem:

Maximize profit = 5X + 6Y

subject to 2X + Y <= 120

2X + 3Y <= 240

X,Y >= 0

- Enter into Excel and solve. Do not solve graphically.
(a) What is the optimal solution to this problem?
(b) If a technical breakthrough occurred that raised the profit per unit of X to \$8, would this affect the optimal solution?
(c) Instead of an increase in the profit coefficient X to \$8, suppose that profit was overestimated and should only have been \$3. Does this change the optimal solution?

#### Solution Preview

The response addresses the query posted in 675 words with APA references

//The following discussion throws light on the role played by sensitivity analysis in linear programming. Furthermore, various circumstances under which the sensitivity analysis can be applied are discussed along with the conditions that are necessary for applying sensitivity analysis//.

Solution 1

Sensitivity analysis is a special type of analysis that helps in determining the sensitiveness of the optimal solution in context of changes in the data values while studying linear programming (Saltelli, Chan & Scott, 2009). Under the circumstances of misleading optimal solutions the sensitivity analysis is applied to the linear programming. In addition to this, it has been seen that sensitivity analysis can be applied in linear programming under the condition when the values of optimal solutions are inaccurate. Furthermore, cases of cost changes where the value of cost changes by ? in the original problem and for this purpose new variables are added.

//After understanding the role of ...

#### Solution Summary

The expert discusses the role of sensitivity analysis in linear programming. The response addresses the query posted in 675 words with APA references and excel file.

\$2.19