Explore BrainMass

Bonds Portfolios - Statistical Calculations

This content was STOLEN from BrainMass.com - View the original, and get the already-completed solution here!

See the attachment.
Assume a bond fund manager manages a portfolio of 50 high yield (speculative) bonds which are mostly rated B. Suppose, based on past experience, the probability of default of one of these bonds in the next year is approximately 11.9%. Suppose the default potential of each bond in this bond portfolio is a binary random variable with mean p and variance p(1-p). Assume default is independent across bonds, so that the number of defaulted bonds in the portfolio will follow a binomial distribution with mean 50p and variance 50p(1-p) where p = 0.119.

(a) Over the next year, what is the expected number of defaults in the portfolio assuming a binomial model for defaults?
(b) Estimate the standard deviation of the number of defaults over the next year.
(c) What is the probability that the number of defaults will be 4 or less over the next year?
(d) Find a 95% confidence interval around the mean for the number of defaults we are likely to see in the coming year (Hint: you may use the following formula: PLEASE SEE JPEG ATTACHMENT).
(e) Critique the use of the binomial distribution in this context.
(f) What would happen to your confidence interval in part (d) if the bond probabilities were not independent of each other?

© BrainMass Inc. brainmass.com October 25, 2018, 4:21 am ad1c9bdddf


Solution Preview

Please see the attached document.

Let n be the number of bonds (50), p be the probability of each bond defaulting in the next year (0.119), and X be the random variable for the number of bonds defaulting in the next year.

a) Expectation = np = 50(0.119) = 5.95.

b) Standard deviation
= Sqrt(Variance)
= Sqrt(50p(1-p))
= Sqrt(50(0.119)(0.881))
= Sqrt(5.24195)
= 2.29

c) P(X ≤ 4)
= P(X = 0) + ...

Solution Summary

The solution determines statistical calculations for bonds portfolios.

See Also This Related BrainMass Solution

Investment Portfolio

A bank has $650,000 in assets to allocate among investments in bonds, home mortgages, car loans, and personal loans. Bonds are expected to produce a return of 10%, mortgages 8.5%, car loans 9.5%, and personal loans 12.5%. To make sure the portfolio is not too risky, the bank wants to restrict personal loans to no more than 25% of the total portfolio. The bank also wants to ensure that more money is invested in mortgages than in personal loans. And it wants to invest more in bonds than personal loans.

Formulate this as an LP in a spreadsheet and solve with Solver.
How much should the bank invest in each of the asset classes to maximize total expected return?

View Full Posting Details