Purchase Solution

Simple Harmonic Motion: Position, velocity, and energy

Not what you're looking for?

Ask Custom Question

A block of mass m is attached to a spring whose spring constant is k. The other end of the spring is fixed so that when the spring is unstretched, the mass is located at x=0. Assume that the +x direction is to the right.

The mass is now pulled to the right a distance A beyond the equilibrium position and released, at time t=0, with zero initial velocity.
Assume that the vertical forces acting on the block balance each other and that the tension of the spring is, in effect, the only force affecting the motion of the block. Therefore, the system will undergo simple harmonic motion. For such a system, the equation of motion is a(t)= -k/m x(t),

and its solution, which provides the equation for x(t), is

x(t)= Acos(sqrt k/m t)

a). Find the velocity v of the block as a function of time.
Express your answer in terms of some or all of the variables: k, m, A, and t.

b). Find the kinetic energy K of the block as a function of time.
Express your answer in terms of some or all of the variables: k, m, A, and t.

c). Find K_max, the maximum kinetic energy of the block.
Express your answer in terms of some or all of the variables: k, m, and A.

Attachments
Purchase this Solution

Solution Summary

The equations for instantaneous position, velocity and energies are derived.

Purchase this Solution


Free BrainMass Quizzes
Intro to the Physics Waves

Some short-answer questions involving the basic vocabulary of string, sound, and water waves.

Variables in Science Experiments

How well do you understand variables? Test your knowledge of independent (manipulated), dependent (responding), and controlled variables with this 10 question quiz.

The Moon

Test your knowledge of moon phases and movement.

Basic Physics

This quiz will test your knowledge about basic Physics.

Classical Mechanics

This quiz is designed to test and improve your knowledge on Classical Mechanics.