Purchase Solution

One-Dimensional Spring

Not what you're looking for?

Ask Custom Question

The force exerted by a one-dimensional spring, fixed at one end, is F=-kx, where x is the displacement of the other end from its equilibrium position. Assuming that this force is conservative (which it is) show that the corresponding potential energy is U=1/2kx^2, if we choose U to be zero at the equilibrium position. (b) Suppose that this spring is hung vertically from the ceiling with m suspended from the other end and constrained to move in the vertical direction only. Find the extension x0 of the new Equilibrium position with the suspended mass. Show that the total potential energy (spring plus gravity) has the same form 1/2ky^2 if we use the coordinate y equal to the displacement measured from the new equilibrium position at x=x0 (and redefine our reference point so that U=0 at y=0).

Purchase this Solution

Solution Summary

This solution calculates the potential energy of the spring using the extension and spring constant, it also calculates the extension of the new equilibrium position by taking into account the effects of gravity.

Purchase this Solution


Free BrainMass Quizzes
Variables in Science Experiments

How well do you understand variables? Test your knowledge of independent (manipulated), dependent (responding), and controlled variables with this 10 question quiz.

The Moon

Test your knowledge of moon phases and movement.

Classical Mechanics

This quiz is designed to test and improve your knowledge on Classical Mechanics.

Intro to the Physics Waves

Some short-answer questions involving the basic vocabulary of string, sound, and water waves.

Basic Physics

This quiz will test your knowledge about basic Physics.