Consider an object with height h, mass M, and uniform cross sectional area A floating upright in a liquid with density p.

a.) Calculate the vertical distance from the surface of the liquid to the bottom of the floating object at equilibrium.

b.) A downward force of magnitude F is applied to the top of the object. At the new equilibrium position, how much farther below the surface of the liquid is the bottom of the object than it was in part (a)? (The assumption that F is small enough for some of the liquid to remain above the surface of the liquid should be made)

c) The result from part b should show that if the force is suddenly removed, the object will oscillate up and down in simple harmonicmotion. Calculate the period of this motion, in terms of the density p of the liquid and the mass M and cross-sectional area A of the object.

d.) A 1,500 kg cylindrical can buoy floats vertically in seawater (density 1.03 x 10^3 kg/m^3). The diameter of the buoy is 0.800m. Calculate the additional distance the buoy will sink when a 100 kg man stands on top.

e.) Calculate the period of the resulting vertical simple harmonic motion when the man dives off

f.) Calculate the period of oscillation of an ice cube 4.00 cm on a side floating in water with a density of 1.00 x 10^3 kg/m^3 if it is pushed down and released.

Solution Summary

This solution looks at the bouyance, harmonic motion and period of objects in a fluid.

Calculating Fluid Mechanics. ... Please see the attached file. This solution contains calculations to aid you in understanding how to calculate fluid mechanics. ...

Fluid Mechanics. 6) A sewer 24 in. ... Attached. Detailed solution to five fluid mechanics problems.The equation and steps are detailed in an attached word document. ...

Fluid Mechanics and Tennis Ball Motion. A tennis player hitting from the baseline develops a forward velocity of 70 ft/s and a backspin of 5000 rpm. ...

Fluid Mechanics, Moment of Inertia. ... This solution helps with a problem regarding fluid mechanics. Fluid Mechanics, Moment of inertia. Problem Statement. ...

Fluid Mechanics for a U-band. ... The solution explains how to calculate the vertical force component in a U-band using fluid mechanics principles. ...

Solving a Fluid Mechanics Problem. ... The solution contains a detailed explanation to solve the fluid mechanics problem. Acc to the question. A1 = pi * ( 6/100 )^2. ...

Fluid Mechanics - Volume. 10. ... (All these problem are in the book FLUID MECHANICS 9th edition, by Streeter, Wylie & Bedford ISBN: 0-07-062537-9). ...