An object is positioned at an initial angle on a frictionless spherical shell. It is then let go, and starts sliding on the shell.
In what final angle the object will break free from the shell? the solution should be in terms of the initial angle.

Solution Summary

2 pages solution includes step by step derivations, full explanations and a graph showing how to solve the problem.

A block slides on a semicircular frictionless track. If it starts from rest at position (A), what is its speed at the point marked (B)? A picture of the block and slide is attached as a jpeg file. I believe the answer is 3.7 m/s. I need to see each step and formula to solve this question.

Consider a small frictionless puck perched at the top of a fixed sphere of radius R. If the puck is given a tiny nudge so that is begins to slide down, through what vertical hight will it descend before it leaves the surface of the sphere?[Hint: Use conservation of energy to find the puck's speed as a function of its height, the

Two spheres each of mass m, can slide freely on a frictionless, horizontal surface. Sphere A is moving at a speed Vo=16 ft/s when it strikes sphere B which is at rest and the impact causes sphere B to break into two pieces, each of mass m/2 Knowing that 0.7s after the collision one piece reaches point C and 0.9s after the collis

(See attached file for full problem description)
26. A block of mass m is initially moving to the right on a horizontal frictionless surface at a speed v. It then compresses a spring of spring constant k. At the instant when the kinetic energy of the block is equal to the potential energy of the spring, the spring is compress

A slide-loving pig slides down a 37° incline (Fig. 6-24) in twice the time it would take to slide down a frictionless 37° incline. What is the coefficient of kinetic friction between the pig and the slide?

Please help with the following problem.
A 2.50 kg object placed on a frictionless, horizontal table is connected to a string that passes over a pulley and then is fastened to a hanging 7.50 kg object, as shown in the figure. Find the magnitude of the acceleration of the two objects and the tension in the string. Show all wor

See attached diagram.
The diagrams in Figure 9-13 show a brick weighing 24.8 N being released from rest on a 1.00 m frictionless plane, inclined at an angle of 30.0°. The brick slides down the incline and strikes a second brick weighing 37.4 N.
Figure 9-13
(a) Calculate the speed of the first brick at the bottom of the i

A black of mass m=750g is released from rest and slides down a frictionless track of height h=55.2cm. At the bottom of the track the block slides freely along a horizontal table until it hits a spring attached to a heavy, immovable wall. The spring compressed by 2.64cm at the maximum compression. What is the value of the spring

I need some help answering these questions:
a) The gravitational potential energy U(r) of a mass m due to a mass density ρ(r) satisfies ∇^2 U = 4 π Gmρ, where G is the gravitational constant. If the earth is considered to be a uniform sphere of mass M, radius R, show that the gravitational potential energy of a mass m ins