Purchase Solution

Orbital mechanics solved by using substitution integrals

Not what you're looking for?

Ask Custom Question

Show the integral below can be integrated to give Equation 1

θ(r) = ∫ {[(L/r^2) dr] / [ 2μ (E+(k/r) - (L^2/ 2μr^2))]^.5} + Constant

Using :

U= L/r and r = minimum at θ = 0

Equation 1----------cos (θ) =[ (L^2/(μkr)) - 1]/ [{1+((2EL^2)/(μk^2))}^.5]

See attached file for full problem description.

Attachments
Purchase this Solution

Solution Summary

A detailed solution is given regarding orbital mechanics.

Solution Preview

Referring back to Eqs. (7), (8) and (9) of the solution of the previous problem (with appropriate changes in notation), you see that:

d theta/dt = L/(m r^2) (1)

dr/dt = Plus/minus [(2/m) * (E - V(r)) ]^(1/2) (2)

where V(r) = - k/r + L^2/(2m r^2) (3)

If you divide (1) by (2) you get:

d theta/dr = L/(m r^2) * [(2/m) * (E - V(r)) ]^(-1/2) =

L/r^2 * [ 2m (E - V(r)) ]^(-1/2) =

L/r^2 * [ 2m ...

Purchase this Solution


Free BrainMass Quizzes
The Moon

Test your knowledge of moon phases and movement.

Intro to the Physics Waves

Some short-answer questions involving the basic vocabulary of string, sound, and water waves.

Classical Mechanics

This quiz is designed to test and improve your knowledge on Classical Mechanics.

Basic Physics

This quiz will test your knowledge about basic Physics.

Introduction to Nanotechnology/Nanomaterials

This quiz is for any area of science. Test yourself to see what knowledge of nanotechnology you have. This content will also make you familiar with basic concepts of nanotechnology.