
[image: image1.png]THEOREM 2,19 - i o et

Pumping lemma for context-free languages 1f A is a context-free language,
then there is a number p (the pumping length) where, if 5 is any string in A of
length at least p, then s may be divided into five pieces s = uvayz satisfying the
conditions:

1. Foreachi > 0, uwv'zy'z € 4,

2. {vy| > 0,and

3. jvay] < p.

‘When s is being divided into uvayz, condition 2 says that either v or y is not
the empty string. Otherwise the theorem would be trivially true. Condition 3
states that the pieces v, 7, and y together have length at most p. This technical
condition sometimes is useful in proving that certain languages are not context
free.

OOF IDEA Let A be a CFL and let G be a CFG that generates it. We must
show that any sufficiently long string s in A can be pumped and remain in A. The
idea behind this approach is simple.

Let 5 be a very long string in A. (We make clear later what we mean by “very
long.”) Because s is in A, it is derivable from G and so has a parse wree. The
parse tree for s must be very tall because s is very long. That is, the parse tree
must contain some long path from the start variable at the root of the tree to
one of the terminal symbols at a leaf. On this long path some variable symbol
must repeat because of the pigeonhole principle. As the following figure shows,
this repetition allows us to replace the subtree under the second occurrence of
R with the subtree under the first occurrence of R and still get a legal parse tree.

[image: image2.png]Tbarefarewemymtsinmﬁvcpigmﬂv@yzasﬂmﬁgﬂmhdin&s,andwemy
repeat the second and fourth picces and obtain a string still in the language. In
other words, uv'zy'z is in A for any i > 0.

T

T T
®
2
R z
u v vz u z
vz
FIGURE 2.16
Surgery on parse trees

Let’s now turn to the details to obtain all three conditions of the pumping
lemma. We also show how to calculate the pumping length p.

PROOF Let (G be a CFG for CFL A. Let b be the maximum number of symbols
in the right-hand side of a rule, We may assume that b > 2. Tn any parse tree
using this grammar we know that a node can have no more than b children. In
other words at most b leaves are 1 step from the start variable; at most b? leaves
are at most 2 steps from the start variable; and at most 5" leaves are at most
steps from the start variable. So, if the height of the parse tree is at most &, the
length of the string generated is at most b

Lt [V] be the nuber of veriablosin G, Wessrp o be 8V Benpuse b 50,
we know that p > bV1*1, 50 a parse tree for any string in 4 of length at least p
requires height at least [V] 4 2.

Suppose that s is a string in A of length at least p. We now show how to
pump s. Let 7 be a parse tree for s. If s has several parse trees, we choose T to
be a parse tree that has the smallest number of nodes. As |s| > p, we know that
7 has height at least [V'| + 2, so the longest path in 7 has length at least [V] + 2.
“This path must have at least V'] + 1 variables because only the leaf is a terminal.
With G having only |V'| variables, some variable R appears more than once on
the path. For convenience later, we select R to be a variable that repeats among
the lowest [V'| + 1 variables on this path.

[image: image3.png]We divide s into uvzyz according to Figure 2.16. Each occurrence of R has
a subtree under it, generating a part of the string s. The upper occurrence of R
has a larger subtree and generates vry, whereas the lower occurrence generates
just x with a smaller subtree. Both of these subtrees are generated by the same
variable, so we may substitute one for the other and still obtain a valid parse tree.
Replacing the smaller by the larger repeatedly gives parse trees for the strings
uv'zy'z at each i > 1. Replacing the larger by the smaller generates the string
uzz. That establishes condition 1 of the lemma. We now turn to conditions 2
and 3.

“To get condition 2 we must be sure that both v and y are not . If they were,
the parse tree obtained by substituting the smaller subtree for the larger would
have fewer nodes than does and would still generate s. This result isn’t possible
because we had already chosen 7 to be a parse tree for s with the smallest number
of nodes. That is the reason for selecting 7 in this way.

In order to get condition 3 we need to be sure that vay has length at most p.
In the parse tree for s the upper occurrence of R generates vzy. We chose R so
that both occurrences fall within the bottom [V/|+ 1 variables on the path, and we
chose the longest path in the parse tree, so the subtree where R generates vay is

at most |V| +2 high. A tree of this height can generate a string of length at most
b\l'¥+2

=p.

