1) In a certain cathode-ray tube, the electrons are accelerated under a difference of potential of 5 kilovolts. After being accelerated, they travel horizontally over a distance of 200 millimeters. Calculate the downward deflection over this distance caused by the gravitational force. An electron carries charge $1.6 \times 10^{\wedge}-19$ coulomb and mass $9.1 \times 10^{\wedge}$-31 kilogram.
2) The figure shows a cylindrical electrostatic analyzer or velocity selector. It consists of a pair of cylindrical conductors separated by a radial distance of a few millimeters. Show that, if the radial distance between the cylindrical surfaces of average radius R is a , and if the voltage between them is V , then the particles collected at I have a velocity of

$$
v=\left(\frac{Q}{m} \frac{V R}{a}\right)^{1 / 2}
$$

