Sketch the graph of $y= \pm 2 \sqrt{x+3}-6$.
The parent graph is the graph of $y=x^{2}$.

Reflect the parent graph over the line $y=x$ to obtain its inverse whose equation is $y= \pm \sqrt{x}$.

Sketch the graph of $y= \pm 2 \sqrt{x}$, which is wider than the reflection of the parent graph.

The graph of $y= \pm 2 \sqrt{x+3}$ is the graph of $J= \pm 2 \sqrt{x}$, translated 3 units left. Subtracting 6 translates the graph 6 units down.

CHECKING FOR UNDERSTANDING

Read and study the lesson to answer each question.

1. Describe the relationship between the coordinates of the ordered pairs of a relation and its inverse.
2. Demonstrate how transformations are used to graph $y=\sqrt[3]{x-2}+3$.
3. Find a counterexample to this statement: The inverse of a function is also a function.
4. Show how you know whether the inverse of a function is also a function without graphing the inverse.

Given point \mathbb{P} of the function $f(x)$, state the corresponding point P^{\prime} in the inverse of the function.
5. $P(-4,5)$
6. $P(-3,-2)$
7. $P(-2,8)$
8. $P(3 t, 8 u)$

