1. a) In the infrared spectrum of $\mathrm{H}^{79} \mathrm{Br}$, there is an intense line at $2630 \mathrm{~cm}^{-1}$. Calculated the force constant of $\mathrm{H}^{79} \mathrm{Br}$ and the period of vibration of $\mathrm{H}^{79} \mathrm{Br}$.
b) The force constant of ${ }^{79} \mathrm{Br}^{79} \mathrm{Br}$ is $240 \mathrm{~N} \cdot \mathrm{~m}^{-1}$. Calculated the fundamental vibrational frequency and zero-point energy of ${ }^{79} \mathrm{Br}^{79} \mathrm{Br}$
c) Calculate the average z component of angular momentum, $\left\langle L_{z}\right\rangle$, for an electron in a ring of constant potential when it has the wavefunction:
i) $\psi(\phi)=\sqrt{\frac{1}{\pi}} \sin 3 \phi$
and
ii) $\psi(\phi)=\sqrt{\frac{1}{2 \pi}} \mathbf{e}^{-3 i \phi}$.
2. The Earth (mass $\cong 6 \times 10^{24} \mathrm{~kg}$) rotates about the sun (at an average distance of $\mathrm{r} \cong 1.5 \times 10^{11} \mathrm{~m}$) once per year (one year $=10 \pi$ million seconds).
a) What is the Earth's angular momentum with respect to the sun in units of \hbar ?
b) What is the smallest principle quantum number n that allows the electron in a hydrogen atom to have this value of angular momentum?
c) How large is such an atom? Use $\langle\hat{\gamma}\rangle$ for the H atom in the $1 s$ state to express this size.
3. The five $l=2$ spherical harmonic functions are:

$$
\begin{aligned}
Y_{2,0}(\theta, \phi) & =\frac{1}{4} \sqrt{\frac{5}{\pi}}\left(2 \cos ^{2} \theta-\sin ^{2} \theta\right) \\
Y_{2, \pm 1}(\theta, \phi) & =\mp \frac{1}{2} \sqrt{\frac{15}{2 \pi}} \cos \theta \sin \theta \mathbf{e}^{ \pm i \phi} \\
Y_{2, \pm 2}(\theta, \phi) & =\frac{1}{4} \sqrt{\frac{15}{2 \pi}} \sin ^{2} \theta \mathbf{e}^{ \pm 2 i \phi}
\end{aligned}
$$

a) Prove that these functions are eigenfunctions of \hat{L}^{2} and \hat{L}_{z} with appropriate eigenvalues.
b) Write $Y_{2,0}(\theta, \phi)$ in terms of $\frac{x}{r}, \frac{y}{r}$, and $\frac{z}{r}$.
c) Use superposition to relate $Y_{2,1}$ and $Y_{2,-1}$ to real functions of $\frac{x}{r}, \frac{y}{r}$, and $\frac{z}{r}$. Hint: Remember that $\boldsymbol{e}^{ \pm i \phi}=\cos \phi \pm i \sin \phi$
d) Show that the smplitude,

$$
\psi(\theta, \phi)=\frac{1}{\sqrt{2}}\left[Y_{1,0}(\theta, \phi)+Y_{2,0}(\theta, \phi)\right]
$$

is an eigenfunction of \hat{L}_{z} but not $\hat{L}^{2} . Y_{1,0}(\theta, \phi)=\sqrt{\frac{3}{4 \pi}} \cos \theta$.
4. In class you were shown that not only are the $2 l+1 m$ states of each l degenerate for the hydrogen atom, but there is an additional degeneracy for each n from the fact that $0 \leq l \leq n-1$.
a) Given that under parity

$$
\hat{P} Y_{l m}(\theta, \phi)=(-1)^{-l} Y_{l m}(\theta, \phi)
$$

what is the first n for which a superposition of two different l states of even parity can be constructed? What are the values of l ?
b) The same question as in a), but for the case of odd parity.
5. This is a subtle question. When (in physical space, a.k.a. position representation) an eigenfunction of some Hamiltonian, \hat{H}, is $\psi_{s}(\vec{r})$ with a corresponding eigenvalue $E_{S}\left(\right.$ i.e. $\hat{H} \psi_{s}(\vec{r})=E_{s} \psi_{s}(\vec{r})$), then we know that

$$
E_{s}=\int \psi_{s}^{*}(\vec{r}) \hat{H} \psi_{s}(\vec{r}) d^{3} r
$$

where here we assume that $\psi_{s}(\vec{r})$ is normalized. Now, the amazing thing about the hydrogen atom (or any tow-body coulomb interaction) is that the $2 s$ and $2 p$ states are degenerate. Suppose instead of having a coulomb interaction that the relative interaction in atomic units is actually

$$
V^{\prime}(\rho)=\frac{-\mathbf{e}^{-\gamma \rho}}{\rho}
$$

where $\gamma \ll 1$.
a) Show that the new relative Hamiltonian, \hat{H}^{\prime}, may be written as,

$$
\hat{H}^{\prime}=\hat{H}+\left(\frac{-\mathbf{e}^{-\gamma \rho}}{\rho}+\frac{1}{\rho}\right)
$$

where \hat{H} is the hydrogen atom Hamiltonian.
b) Assume that γ is so small that the eigenfunctions of the hydrogen atom Hamiltonian \hat{H} are also eigenfunctions of \hat{H}^{\prime}. Show that no matter how small γ is, the energies of the $2 s$ and $2 p_{z}$ are no longer degenerate. Are the three $2 p$ states still degenerate?

Extra credit: Suppose instead of a regular Coulomb interaction that the potential was given by $\frac{-1}{\rho^{1+\varepsilon}}$, with $\varepsilon \ll 1$. Show that the $2 s$ and $2 p_{z}$ states are not degenerate using the ideas advanced in the previous part of this problem.
6. Starting with the relationship $[\hat{x}, \hat{p}]=i \hbar$ and the definition $\vec{L}=\vec{r} \times \vec{p}$, show that:

$$
\begin{aligned}
& {\left[\hat{L}_{x}, \hat{L}_{y}\right] }=i \hbar \hat{L}_{z} \\
& \text { and } \\
& {\left[\hat{L}_{z}, \hat{L}^{2}\right] }=0
\end{aligned}
$$

The following commutator relations may be useful: $[A, B C]=B[A, C]+[A, B] C$ and $[A B, C]=A[B, C]+$ $[A, C] B$.
7. Consider a U atom stripped of all but one electron: U^{91+}.
a) What is the ion's ionization energy in both eV and in atomic units?
b) What is $\langle\hat{r}\rangle$ for the $1 s$ state of this ion in both Angstroms and atomic units?
c) For some principle quantum number n^{*}, U^{91+} will have $\langle\hat{r}\rangle_{n^{*} s} \geq\langle\hat{r}\rangle_{1 s}$ for H . What is the smallest value that $n *$ can be?
d) What does the plot of $\langle\hat{r}\rangle_{1 s}$ look like for all the one electron species from H to U^{91+} ?
8. Consider two possible spin states:

$$
\begin{aligned}
\left|\Psi_{1}\right\rangle & =|0\rangle \\
\left|\Psi_{2}\right\rangle & =\sqrt{\frac{1}{4}}|0\rangle+i \sqrt{\frac{3}{4}}|1\rangle
\end{aligned}
$$

a) What is the expectation value of S_{z} for each of these states? (Expectation value $\left.=\left\langle S_{z}\right\rangle=\langle\Psi| S_{z}|\Psi\rangle\right)$
b) What is $\left\langle S_{x}\right\rangle$ for each of these states?
c) What is $\left\langle S_{y}\right\rangle$ for each of these states?

