Let (X, \mathcal{B}, μ) be a complete, finite measure space. For each sets $A, B \in \mathcal{B}$, define

$$
d(A, B)=\mu(A \Delta B)
$$

where $A \Delta B$ is the symmetric different of A and B :

$$
A \Delta B=(A \cup B) \backslash(A \cap B)=(A \backslash B) \cup(B \backslash A)
$$

Introduce the equivalence relation on the family of all measurable sets by declaring A and B equivalent if $d(A, B)=0$. Let E be the space of equivalence classes. Prove that d introduces a metric on E and that (E, d) is a complete metric space.

