Defining $\phi: \mathbb{Z} \rightarrow \mathbb{Z}_{m} \oplus \mathbb{Z}_{n}$ by $\phi(x)=\left([x]_{m},[x]_{n}\right)$. Find the ker ϕ and its image.
Show that ϕ is onto iff $\operatorname{gcd}(m, n)=1$.

Where the direct sum $\mathbb{Z} \oplus \mathbb{Z}=\left\{\left(a_{1}, a_{2}\right) \mid a_{1}, a_{2} \in \mathbb{Z}\right\}$ and addition and multiplication are componentwise.

