ATTACHMENT \#1
Showing two waves, one moving leftward and the other moving rightward on a wire.

$$
y_{1}=y_{m} \sin (k x \text { प })
$$

$$
y_{2}=y_{m} \sin (k x+\square t)
$$

Standing wave on a wire fixed at both ends.
A marks location of Antinodes, points of maximum amplitude; N marks locations of Nodes, stationary points.

$$
y=y_{1}+y_{2}=2 y_{m} \sin k x \cos \square t
$$

The identity needed to add y_{1} and y_{2} is:
$\sin \square+\sin \square=2 \sin \frac{\square+\square}{2} \cos \frac{\square+\square}{2}$
in the above example, $\square=k x+\square t$ and $\square=k x \square \square t$

