Question 1. Explain what it means for a function $f: \mathbb{R} \rightarrow \mathbb{R}$

- to be differentiable at the point $a \in \mathbb{R}$;
- to have a limit at the point $a \in \mathbb{R}$.
* Question 2 [4+2 marks].
(1) Show, directly from the definition, that the function given by $f(x)=$ x^{2} is differentiable at a point a and has derivative $f^{\prime}(a)=2 a$.
(2) Show, directly from the definition, that the function given by $f(x)=$ x^{n} for an integer $n>0$, is differentiable at a point a and has derivative $f^{\prime}(a)=n a^{n-1}$; you may use the identity for $\left(x^{n}-a^{n}\right)$ from lectures.
(3) Show, using induction on n and any results from lectures you wish, that the function given by $f(x)=x^{n}$ for an integer $n>0$, is differentiable at a point a and has derivative $f^{\prime}(a)=n a^{n-1}$; you should explain what results from lectures you are using.
(4) Show, using induction on n and any results from lectures you wish, that the function given by $f(x)=x^{n}$ for an integer $n<0$, is differentiable at a point a and has derivative $f^{\prime}(a)=n a^{n-1}$; you should explain what results from lectures you are using.
* Question $3[\mathbf{1}+\mathbf{2}$ marks]. If f and g are functions $\mathbb{R} \rightarrow \mathbb{R}$ differentiable at $a \in \mathbb{R}$, show that $(f+g)$ is also differentiable at a.

Question 4. Suppose $h: \mathbb{R} \rightarrow \mathbb{R}$ is defined by

$$
h(x)=\left\{\begin{array}{cc}
0 & \text { if } x<0 \\
x^{3}+x^{2}+c & \text { if } x \geqslant 0
\end{array}\right.
$$

for some constant $c \in \mathbb{R}$. Show that there is exactly one value of c which makes h differentiable at 0 . You should justify your answer, explaining which results (if any) from lectures you are using.

For that value of c, is h^{\prime}, thought of itself as a function $\mathbb{R} \rightarrow \mathbb{R}$, differentiable at 0 ?

* Question 5 [2+1 marks]. Find all maximum and minimum points of the following functions as x ranges over the sets of numbers given, briefly justifying your answers.
(1) $f(x)=x^{3}-12 x+208$ where $x \in \mathbb{R}$.
(2) For fixed $a>0, f(x)=a^{-x}$ where and $x \in[0,1]$.
(3) $f(x)=x^{2}$ where $x \in(0,1)$.
(4) $f(x)=\cos (x)$ where $x \in[0,7]$.
* Question 6 [3+2 marks]. Suppose f and g are differentiable functions $\mathbb{R} \rightarrow \mathbb{R}$ and suppose their derivatives, $f^{\prime}(x)$ and $g^{\prime}(x)$, are continuous as functions of x. Suppose $f(a)=g(a)=0$ for some a, but $g^{\prime}(a) \neq 0$. By considering the equality (for $x \neq a$)

$$
\frac{f(x)-f(a)}{x-a} \cdot \frac{x-a}{g(x)-g(a)}=\frac{f(x)-f(a)}{g(x)-g(a)}
$$

show that $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$. This result is known as l'Hôpital's rule.

Hence, or otherwise, compute $\lim _{x \rightarrow 0}\left(\frac{\sin (3 x)}{2 \cos (x)-2+x}\right)$.
Using an illustration of the graphs of a simple example of the form $f(x)=$ $b x$ and $g(x)=c x$, give an intuitive, geometric explanation of why l'Hôpital's rule should be true.

* Question 7 [2+1 marks]. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable at least two times at all points of \mathbb{R}. Suppose that for some points $a<b<c$, we have $f(a)=f(b)=f(c)$. Use Rolle's theorem to show there is a point $d \in(a, c)$ with $f^{\prime \prime}(d)=0$.

Question 8. Write $f^{(n)}(x)$ for the $n^{\text {th }}$ derivative of f at x. Find a formula, in terms of n, for $f^{(n)}(0)$ where f is each of the functions
(1) $\sin (x)$;
(2) $\cos (2 x)$;
(3) $\sin ^{2}(x)$.

