Question 1. Explain what it means for a function $f : \mathbb{R} \to \mathbb{R}$

- to be differentiable at the point $a \in \mathbb{R}$;
- to have a limit at the point $a \in \mathbb{R}$.

* Question 2 [4+2 marks].

- (1) Show, directly from the definition, that the function given by $f(x) = x^2$ is differentiable at a point *a* and has derivative f'(a) = 2a.
- (2) Show, directly from the definition, that the function given by $f(x) = x^n$ for an integer n > 0, is differentiable at a point a and has derivative $f'(a) = na^{n-1}$; you may use the identity for $(x^n a^n)$ from lectures.
- (3) Show, using induction on n and any results from lectures you wish, that the function given by $f(x) = x^n$ for an integer n > 0, is differentiable at a point a and has derivative $f'(a) = na^{n-1}$; you should explain what results from lectures you are using.
- (4) Show, using induction on n and any results from lectures you wish, that the function given by $f(x) = x^n$ for an integer n < 0, is differentiable at a point a and has derivative $f'(a) = na^{n-1}$; you should explain what results from lectures you are using.

* Question 3 [1+2 marks]. If f and g are functions $\mathbb{R} \to \mathbb{R}$ differentiable at $a \in \mathbb{R}$, show that (f + g) is also differentiable at a.

Question 4. Suppose $h \colon \mathbb{R} \to \mathbb{R}$ is defined by

$$h(x) = \begin{cases} 0 & \text{if } x < 0\\ x^3 + x^2 + c & \text{if } x \ge 0 \end{cases}$$

for some constant $c \in \mathbb{R}$. Show that there is exactly one value of c which makes h differentiable at 0. You should justify your answer, explaining which results (if any) from lectures you are using.

For that value of c, is h', thought of itself as a function $\mathbb{R} \to \mathbb{R}$, differentiable at 0?

* Question 5 [2+1 marks]. Find all maximum and minimum points of the following functions as x ranges over the sets of numbers given, briefly justifying your answers.

(1) $f(x) = x^3 - 12x + 208$ where $x \in \mathbb{R}$. (2) For fixed a > 0, $f(x) = a^{-x}$ where and $x \in [0, 1]$. (3) $f(x) = x^2$ where $x \in (0, 1)$. (4) $f(x) = \cos(x)$ where $x \in [0, 7]$.

* Question 6 [3+2 marks]. Suppose f and g are differentiable functions $\mathbb{R} \to \mathbb{R}$ and suppose their derivatives, f'(x) and g'(x), are continuous as functions of x. Suppose f(a) = g(a) = 0 for some a, but $g'(a) \neq 0$. By considering the equality (for $x \neq a$)

$$\frac{f(x) - f(a)}{x - a} \cdot \frac{x - a}{g(x) - g(a)} = \frac{f(x) - f(a)}{g(x) - g(a)}$$

show that $\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f'(x)}{g'(x)}$. This result is known as *l'Hôpital's* rule.

Hence, or otherwise, compute $\lim_{x\to 0} \left(\frac{\sin(3x)}{2\cos(x)-2+x} \right)$.

Using an illustration of the graphs of a simple example of the form f(x) = bx and g(x) = cx, give an intuitive, geometric explanation of why l'Hôpital's rule should be true.

* Question 7 [2+1 marks]. Suppose $f \colon \mathbb{R} \to \mathbb{R}$ is differentiable at least two times at all points of \mathbb{R} . Suppose that for some points a < b < c, we have f(a) = f(b) = f(c). Use Rolle's theorem to show there is a point $d \in (a, c)$ with f''(d) = 0.

Question 8. Write $f^{(n)}(x)$ for the n^{th} derivative of f at x. Find a formula, in terms of n, for $f^{(n)}(0)$ where f is each of the functions

- (1) $\sin(x)$;
- (2) $\cos(2x);$
- (3) $\sin^2(x)$.