Assignment: Complete all parts below. Attach your work as a .mw (Maple) file.

Part A Find the first four terms of the Taylor Series expansion for $y=e^{x}$ about $x=0$.
Part B Plot the function $f(x)=e^{x}$ along with the Taylor approximation you found in part A on the same set of axes. Use $x=-5$.. 5 for your $x-a x i s$ bounds. What do you notice about the two curves? How well does the Taylor series expansion approximate the exact curve of $f(x)=e^{x}$? Where is the approximation the "best"?

Part C Repeat parts A and B, but this time, expand the Taylor series out for the first 6 terms. Which is better and why? How could you measure the "error" of the approximation at the point $x=2$?

Part D Use the remainder formula to compare the error for the Taylor approximation found in Part A and the Taylor approximation found in part C.
Part D Find the first five terms of the Taylor Series expansion for $y=\sin (x)$ about $x=0$. How does this compare/contrast to the series expansion for cosine?

Part E Find the first four terms of the Taylor Series expansion for $y=1 /(x-1)$ about $x=2$. Plot the Taylor approximation, along with the original function on the same set of axes. Where is the approximation the "best"?

