A Simple ring is an Artenian ring with no 2-sided ideals. Let K be a field. Let V be an n -dimensional vector space over K and let $\mathrm{A}=$ $\operatorname{End}_{K}(\mathrm{~V})$, the ring of n x n matrices over K. The ring is clearly Artinian since it has finite dimension over K . We want to see that the 2 -sided ideal are either (0) or A. Let W be a subspace of V . Then $\mathrm{L}_{W}=\{\mathrm{f} \in$ $\mathrm{A} \mid \mathrm{f}(\mathrm{W})=0\}$ is clearly a left ideal of A . Let I be a left ideal, $\mathrm{W}=\{$ $\mathrm{x} \in \mathrm{V} \mid \mathrm{f}(\mathrm{x})=0$ for all $\mathrm{f} \in \mathrm{I}\}$, so $\mathrm{I} \subseteq \mathrm{L}_{W}$. Let e_{1}, \ldots, e_{n} be a basis of V with $\mathrm{e}_{1}, \ldots, \mathrm{e}_{r}$ a basis of W .

Show that if $f(x)$ has zero e_{1} - coordinate for all $f \in I$, then $x \in W$. Note that if π permutes the e_{i}, then $\pi \circ \mathrm{f} \in \mathrm{I}$.

