(a) Prove the following theorem. Note that it is an "if and only if" theorem so you need to prove "if...then..." both ways.

Def: Let f be a function from X to Y. For $A \subseteq X$ and $C \subseteq Y$, then
$f(A)=\{y \in Y: y=f(x)$ for some x in $A\}$, and
$f^{1}(C)=\{x \in X: f(x) \in C\}$.
$f(A)$ is called the image of A, and $f^{-1}(C)$ is called the inverse image of C.

Thm: Let f be a function from X to Y. f is onto if and only if $\forall C \subseteq Y, f\left(f^{-1}(C)\right)=C$
(b) Find an example of a function $f: X \rightarrow Y$ that is not onto and a subset of C of Y such that $f\left(f^{-1}(C)\right) \neq C$

