(a) Prove the following theorem. Note that it is an "if and only if" theorem so you need to prove "if...then..." both ways.

Def: Let f be a function from X to Y. For A \subseteq X and C \subseteq Y, then f(A) = { y \in Y : y=f(x) for some x in A }, and f¹(C) = { x \in X : f(x) \in C}.

f(A) is called the **image of A**, and $f^{-1}(C)$ is called the **inverse image of C**.

Thm: Let f be a function from X to Y. f is onto if and only if $\forall C \subseteq Y$, f (f¹(C)) = C

(b) Find an example of a function f: $X \to Y$ that is not onto and a subset of C of Y such that f (f¹(C)) \neq C