

10. Suppose a ship is searching visually for a life raft and that at time t, range is r(t) and detection rate is

$$\gamma(t) = \frac{40}{r(t)^3} \operatorname{hr}^{-1},$$

with t in hours, and r(t) in nm. The ship starts the search at an initial range of 2 nm and approaches the life raft on a direct course at a speed of 10 knots. Answer the following:

- a. What are r(t) and $\gamma(t)$?
- b. What is the probability that detection will occur before the range decreases to 1 nm?
- 11 To continuous looking problem the maximum range of detection is 200 nm and the target will

			-	
	ê		*	

	-	
	-	
	ø	