Problem of Schwarz's Lemma

- 1. Suppose $f: D \to \emptyset$ satisfies Re $f(z) \ge 0$ for all z in D and suppose that f is analytic and non-constant.
 - (a) Show that Re f(z) > 0 for all z in D
 - (b) By using an appropriate Mobius transformation, apply Schwarz's Lemma to prove that if f(0) = 1 then $|f(z)| \le \frac{1+|z|}{1-|z|}$ for |z| < 1. What can be said if $f(0) \ne 1$?
 - (c) Show if f(0) = 1, f also satisfies $|f(z)| \ge \frac{1 |z|}{1 + |z|}$.

Nots: Re f(z) indicates the residue of f(z)

Theorem, Lemma and Propositon:

Schwarz's Lemma:

Let D = $\{z: |z| < 1\}$, suppose f is analytic on D with

(1) $|f(z)| \le 1$ for z in D

(2) f(0) = 0

Then $|f'(0)| \le 1$ and $|f(z)| \le |z|$ for all z in D.

If |f'(0)| = 1 or if |f(z)| = |z| for some z not equal to zero, then there exists a constant c, |c| = 1, such that f(w) = cw for all w in D.

Proposition:

If |a| < 1 then φ_a is a one-one map of D = $\{z: |z| < 1\}$ onto itself; the inverse of φ_a is φ_{-a} . Furthermore, φ_a maps ∂ D onto ∂ D, $\varphi_a(a) = 0$, $\varphi_a'(0) = 1 - |a|^2$, and $\varphi_a'(a) = (1 - |a|^2)^{-1}$.

Theorem:

Let $f: D \to D$ be a one-one analytic map of D onto itself and suppose f(z) = 0. Then there is a complex number c with |c| = 1 such that $f = c\phi_a$.

Definition:

A mapping of the form $S(z) = \frac{az+b}{cz+d}$ is called a linear fractional transformation. If a, b, c, and d also satisfy ad – bc \neq 0 then S(z) is called a <u>Mobius transformation</u>.