Given X is a general topological space:

Suppose $X = A_1 \cup A_2 \cup ...$, where $A_n \subseteq A_{n+1}$ for each *n*. If $f: X \rightarrow Y$ is a function such that, for each *n*, $f | A_n : A_n \rightarrow Y$ is continuous with respect to the induced topology on A_n , show that $f: X \rightarrow Y$ itself is continuous.

Please note that A_{n+1} denotes the *interior* of the set A_{n+1} . So each A_n is embedded in the interior of the subsequent set.

Also, the union given above is an arbitrary union of A_i .

The notation $f | A_n : A_n \rightarrow Y$ denotes the restriction of the function f to A_n .