Show that every countable linear ordering is isomorphic to a subset of the rationals under their usual order but that ω_1 (with its well order) is not isomorphic to any set of reals under their usual ordering. The solution may use any algebraic facts about the reals.

Notation and Definitions

 ω_1 is an uncountable set

 \leq is a well ordering of ω_1 with the property that $seg_{\omega_1}(\alpha)$ is countable for all $\alpha \in \omega_1$

[from Notes on Set Theory - Yiannis Moschovakis]
[Let me know if you have a question on notation; I have a pdf file of this book]

5.19. Definition. A binary relation \leq on a set P is a **partial ordering** if it is reflexive, transitive and antisymmetric, i.e., for all $x, y, z \in P$,

$$x \le x$$
 (reflexivity),
 $x \le y \& y \le z \Longrightarrow x \le z$ (transitivity),
 $x \le y \& y \le x \Longrightarrow x = y$, (antisymmetry).

In connection with partial orderings we will also use the notation

$$x < y \iff_{df} x \le y \& x \ne y.$$

The partial ordering \leq is **total**, or **linear**, or simply an **ordering**, if, in addition, any two elements of P are **comparable** in \leq , i.e.,

$$(\forall x, y \in P)[x \le y \lor y \le x],$$

or equivalently

$$(\forall x, y \in P)[x < y \lor x = y \lor y < x].$$