/Marketers know that tastes differ in various regions of the country. In the 11-59 rental car business, an industry expert has given the opinion that there are strong regional preferences for size of car and quotes the following data in support of that view:

	Region of Country						
Preferred Car Type	Northeast	Southeast	Northwest	Southwest			
Full-size	105	120	105	70			
Intermediate	120	100	130	150			
All other	25	· 30	15	30			

State the appropriate null and alternative hypotheses. (a)

(b) Do the data support the expert's opinion at the 0.05 significance level?

What about at the 0.20 significance level? (c)

(11) SQ TEST

11-67

In investor is interested in seeing whether there are significant differences In the rates of return on stocks, bonds, and mutual funds. He has taken ran- lom samples of each type of investment and has recorded the following lata.

Rate of Return (percent)						
Stocks	2.0	6.0	2.0	2.1	6.2	2.9
Bonds	4.0	3.1	2.2	5.3	5.9	
Mutual funds	3.5	3.1	2.9	6.0		

- State null and alternative hypotheses. (a)
- Test your hypotheses at the 0.05 significance level. (b)
- State an explicit conclusion. 6

In the development of new drugs for the treatment of anxiety, it is important to check the drugs' effects on various motor functions, one of which is driving. The Confab Pharmaceutical Company is testing four different tranquilizing drugs for their effects on driving skill. Subjects take a simulated driving test, and their scores reflect their errors. More severe errors lead to higher scores. The results of these tests produced the following table:

Drug 1	245	258	239	241	
Drug 2	277	276	263	274	
Drug 3	215	232	225	247	226
Drug 4	241	253	237	246	240

At the 0.05 level of significance, do the four drugs affect driving skill differently?

12-48 Calculate the sample coefficient of determination and the sample correlation coefficient for Exercise 12-14.

Business Week and U.S. News & World Report publish rankings of the top 20 business schools. The Business Week overall ranking is based on rankings obtained from students and from firms that recruit MBAs. Along with the rankings, the magazines report information about the cost of getting an MBA degree and the graduates' average starting salaries. Use the data in Table RW12-1 to answer Exercises 12-49 to 12-52.

Table RW12-1	1	992 Rank	BW Ra	inking		Starting
	chool BW	USN&WR	by Students	by Firms	Cost	Salary
Business School Ranking Surveys Nor	thwestern 1	4	3	1	37,600	70,200
naming samelys	cago 2	6	10	4	38,500	68,600
	vard 3	2	12	3	37,100	84,960
	arton 4	3	15	2	37,600	72,200
Mic	higan 5	7	9	6	37,200	58,110
	tmouth 6	10	1	12	37,500	74,260
Star	nford 7	1	5	7	38,480	82,860
Indi	ana 8	18	6	8	24,600	49,070
Colu	umbia 9	8	18	5	38,000	66,620
Nor	th Carolina 10	16	8	11	17,360	55,500
Virg	inia 11	11	2	15	28,500	65,280
Duk	e 12	9	7	14	37,000	59,870
MIT	13	5	14	10	39,000	73,000
Con	nell 14	12	4	17	37,000	59,940
NYU	J 15	17	16	13	36,100	56,730
UCL	A 16	14	11	16	22,500	64,540
Carr	negie-Mellon 17	15	23	9	37,200	56,980
Berl	celey 18	13	13	19	15,400	65,500
Van	derbilt 19	19	19 (20	35,000	47,320
Was	hington 20	20	24	18	33,500	48,200

Source: Adapted from Business Week (26 October 1992):60, and U.S. News & World Report (23 March 1992):66.

9 Plot a scatter diagram of the USN&WR ranking vs. the cost of the MBA degree. Do more expensive schools appear to get higher rankings? Calculate the sample coefficient of correlation between these two variables.

the sample coefficient of correlation between these marked in the sample coefficient of correlation between these marked in the sample coefficient of the sample coeff

test appropriate hypotheses about its slope.
12-51 Do graduates from the higher-ranking schools get higher starting salaries?
Plot a scatter diagram of starting salary vs. the *Business Week* overall ranking. Fit a regression equation to the data and test appropriate hypotheses

12-52

about its slope. How strongly are the starting salaries related to the rankings? Calculate the sample coefficients of determination between the starting salaries and the three *Business Week* rankings (overall, by students, and by firms). Which of these rankings explains the largest fraction of the variation in starting salaries?

Highway crashes killed more than 75,000 occupants of passenger cars during 1993–1996. Using that grim statistic as a starting point, researchers at 14-71 the Insurance Institute for Highway Safety computed death rates for the 103 largest-selling vehicle series. Vehicles were categorized as station wagons & vans, four-door cars, two-door cars, or sports & specialty cars. Further stratification in each category labeled vehicles as large, midsize, or small. Looking at the rates (deaths per 10,000 registered vehicles) for fourdoor cars, the figures are as follows:

Large	1.2	1.3	1.4	1.5	1,5	1.5	1.6	1.8		
Midsize	1.1	1.2	1.2	1.2	1.3	1.3	1.3	1.3	1.4	1.4
	1.5	1.6	1.6	1.6	1.7	1.7	1.8	1.9	2.0	2.3
	2.3	2.4	2.5	2.6	2.9					
Small	1.1	1.5	1.6	1.7	1.8	2.0	2.0	2.0	2.3	2.5
	2.6	2.8	3.2	4.1						

Use the Kruskal-Wallis test to test whether the three population means are equal. Test at the 0.05 level of significance.

Several groups were given a list of 30 activities and technological advances and were asked to rank them, considering the risk of dying as a consequence of each. The results are in the following table. Calculate the rank correlation coefficient of each group relative to the experts' ranking. Which group seemed to have the most accurate perception of the risks involved?

- A = Experts
- **B** = League of Women Voters
- C = College Students
- **D** = Civic Club Members

Risk	A	В	с	D
Motor vehicles	1	2	5	. 3
Smoking	2	4	3	4
Alcoholic beverages	3	6	7	5
Handguns	4	3	2	1
Surgery	5	10	11	9
Motorcycles	6	5	6	2
X-rays	7	22	17	24
Pesticides	8	9	4	15
Electric power (nonnuclear)	9	18	19	19
Swimming	10	19	30	17
Contraceptives	11	20	9	22
General (private) aviation	12	7	15	11
Large construction	13	12	14	13
Food preservatives	14	25	12	28
Bicycles	15	16	24	14
Commercial aviation	16	17	16	18
Police work	17	8	8	7
Fire fighting	18	11	10	6
Railroads	19	24	23	20
Nuclear power	20	1	1	8
Food coloring	21	26	20	30
Home appliances	22	29	27	27
Hunting	23	13	18	10
Prescription antibiotics	24	28	21	26
Vaccinations	25	30	29	29
Spray cans	26	14	13	23
High school & college football	27	23	26	21
Power mowers	28	27	28	25
Mountain climbing	29	15	22	12
Skiing	30	21	25	16

14-78

I 15-60 RJ's Grocers has added broiled whole chickens to its line of takeout food for busy professionals who don't have time to cook at home. The number of precooked chickens sold in the first 7 weeks are as follows:

Week	1	2	3	4	5	6	7
Sales	41	52	79	76	72	59	41

- (a) Find the linear regression line that best fits these data.
- (b) Estimate the expected number of sales for week 8.
- (c) Based on the estimate in part (b) and the available data, does the regression accurately describe the sales trend for this item?
- TL THE D' Comment is a large f

■ 15-44 The number of people admitted to Valley Nursing Home per quarter is given in the following table:

	Spring	Summer	Fali	Winter
1992	29	30	41	
1993	27	. 34	45	43 48
1994	33	36	46	40 51
1995	34	40	47	53

(a) Calculate the seasonal indices for these data (use a 4-quarter centered moving average).

(b) Deseasonalize these data using the indices from part (a).(c) Find the least-squares line that has the indices from part (a).

(c) Find the least-squares line that best describes the trend of the deseasonalized figures.

:5