
from the editor

�	 I E E E S o f t w a r e P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y � 0 74 0 - 74 5 9 / 0 8 / $ 2 5 . 0 0 © 2 0 0 8 I E E E

E d i t o r i n C h i e f : H a k a n E r d o g m u s n N a t i o n a l R e s e a r c h C o u n c i l C a n a d a
h a k a n . e r d o g m u s @ c o m p u t e r . o r g

Mission Statement: 	 To be the best source of reliable, useful, peer-reviewed information for leading software practitioners—
	 the developers and managers who want to keep up with rapid technology change.

So Many Languages,
So Little Time

Hakan Erdogmus

W
hat’s up and coming in the program-
ming language arena? A rudimentary
analysis of 200+ sessions’ titles and
ab­stracts at Oopsla ’07 (22nd Interna-
tional Conference on Object-Oriented
Programming, Systems, Languages, and

Applications) provides a rough idea.
About one-third of the conference’s total airtime

addressed topics related to a dis-
tinguishable language paradigm.
I grouped the language coverage
into five focus areas addressing dif-
ferent language paradigms, then
estimated each area’s percentage
of conference airtime. Here are the
results:

Objects and object-based ap-
proaches: 67%

Functional languages and programming: 15%
Dynamic languages: 10%
Domain-specific languages: 6%
Aspect orientation: 2%

I calculated airtime using a time-based weighting
scheme, with a full-day event weighted at one. The
five focus areas, however, weren’t mutually exclu-
sive or comprehensive. Many languages are multi
paradigm and are becoming more so as they evolve.

These data represent only the conference’s sup-
ply side. To capture demand, I also conducted an
informal poll in the conference hallways (see figure
1). I asked 99 randomly selected delegates (about
8 percent of the attendees) seven multiple-choice
questions. The questions probed respondents’ per-
ceptions regarding the top four focus areas.

n

n

n

n

n

Objects’ ironic legacy
Frederick P. Brooks Jr. himself stated at the con-

ference that if any technology deserves the “silver
bullet” label, it would be objects. (See page 91 of
this issue for a summary of the Oopsla retrospective
on “No Silver Bullet.”) The poll respondents echoed
his sentiment in large numbers, declaring that ob-
jects generally have been good for software develop-
ment. However, when I asked whether most devel-
opers use objects properly, fewer than 7 percent said
“Yes.” Among those who believe they “get” objects,
the sentiment that lay people don’t is widespread.
Mysteriously, a paradigm’s mainstream status and
positive impact don’t correlate with informed usage.
I wonder, if most people understood objects better
and used them properly, would the technology have
had even greater impact? I’m not sure.

Dynamic languages
are getting hotter

Dynamic languages are all about runtime flex-
ibility. Rather than putting a straightjacket on
program behavior at compile time, dynamic lan-
guages support behavioral manipulation and ad-
aptation at runtime and encourage fast, on-the-fly
experimentation.

What constitutes a dynamic language? Most
agree that Ruby, Perl, Python, Lua, PHP, Groovy,
and JavaScript are truly dynamic. Despite its added
late binding ability, not everyone considers Visual-
Basic dynamic because of its static typing roots. Of
older-generation languages, Smalltalk, APL, Tcl,
and Lisp are deemed dynamic. To many, a language
paradigm is more a matter of usage style than an in-
trinsic language property. I suspect when answering
the question “To what extent do you use a dynamic

language?” the respondents had this looser
interpretation in mind. More than 70 per-
cent indicated they use a dynamic language
at least some of the time, and even more as-
sociated dynamic languages with improved
productivity.

The question “Are dynamic languages
harmful?” invariably elicited a nervous
chuckle or an “aha,” whereas I expected
appeals for clarification. The chuckles must
have had something to do with dynamic
languages’ association with dynamic typing
and, in turn, reduced safety. Only 10 per-
cent thought dynamic languages are harm-
ful; nearly half categorically disagreed. Of
those who acknowledged the dangers lurk-
ing beneath, concerns about safety weren’t
a serious impediment: voluntarily or not, 75
percent go ahead and use a language they
consider dynamic anyway. And good for
them. Nearly half of the respondents who
thought most developers at least sometimes
misuse objects didn’t have a problem trust-
ing the same people with the extra power
that a dynamic language bestows.

The rise of functional
languages

Synergies further blur the already fuzzy
philosophical lines that separate languages.
Notably, besides objects, many dynamic
languages emulate a functional-program-
ming style more naturally than do static

languages. A related thread linking the
functional and dynamic worlds is terseness,
an attribute that many developers cherish.

Graham Hutton defines functional pro-
gramming broadly as a computational style
that emphasizes the evaluation of expres-
sions composed of functions and their argu-
ments. In contrast, the imperative style relies
on execution of commands that manipulate
a global program state. As with dynamic
languages, whether a programming lan-
guage can be called functional is a matter of
opinion and depends on the extent to which
the language supports a functional program-
ming style and its constructs preserve func-
tions’ mathematical properties. For purists,
any language with constructs that produce
side effects isn’t functional. Others would
classify, besides the archetypal examples
Haskell and Miranda, impure languages
such as Standard ML, Scheme, Erlang, Ob-
jective Caml, and F# as functional.

Functional programming has been a ter-
ritory frequented mostly by theorists and
researchers. Barring a few examples (nota-
bly Ericsson’s Erlang in the telecommunica-
tions domain), industrial experience with it
has been limited. Philip Wadler, in his 1998
editorial “Why No One Uses Functional
Languages” (ACM Sigplan Notices, vol.
33, no. 8, pp. 23−27), provides a long list
of reasons. The list includes poor interop-
erability with mainstream languages, poor

0% 10% 20% 30% 40% 50% 60%

Do most developers use object
orientation properly?

To what extent have objects
improved software development?

How often do you use a dynamic
language?

To what extent do dynamic
languages improve productivity?

Are dynamic languages harmful?

How often do you program in a
functional language?

To what extent will domain-specific
languages be important

in the near future?

Often

Maybe
No

Significantly

Significantly

Often

Significantly

Yes

Somewhat
 Not much

Sometimes
Never

Somewhat
Not much

Yes
Maybe
No

Somewhat
Not much

Sometimes
Never

Figure 1. A sample group of Oopsla ’07 delegates’ perceptions of language
paradigms.

	 January/February 2008 I E E E S o f t w a r e � �

from the editor editor in chief

Hakan Erdogmus
hakan.erdogmus@computer.org

Editor in Chief Emeritus:
Warren Harrison, Portland State University

associate editors in chief

Design: Philippe Kruchten, University
of British Columbia; kruchten@ieee.org
Distributed and Enterprise Software:
John Grundy, University of Auckland;

john-g@cs.auckland.ac.nz
Empirical Results: Forrest Shull, Fraunhofer

Center for Experimental Software Engineering,
Maryland; fshull@fc-md.umd.edu

Human and Social Aspects: Helen Sharp, The Open
University, London; h.c.sharp@open.ac.uk

Management: John Favaro,
Consulenza Informatica; john@favaro.net

Processes and Practices: Frank Maurer, University
of Calgary; maurer@cpsc.ucalgary.ca

Programming Languages and Paradigms:
Sophia Drossopoulou, Imperial College London;

s.drossopoulou@imperial.ac.uk
Quality: Annie Combelles, DNV/Q-Labs;

annie.combelles@dnv.com
Requirements: Ann Hickey, University of Colorado

at Colorado Springs; ahickey@uccs.edu

department editors

On Architecture: Grady Booch, IBM;
grady@booch.com

Bookshelf: Art Sedighi, SoftModule;
sediga@alum.rpi.edu

Design: Rebecca J. Wirfs-Brock, Wirfs-Brock
Associates; rebecca@wirfs-brock.com

Loyal Opposition: Robert Glass,
Computing Trends; rlglass@acm.org

Not Just Coding: J.B. Rainsberger, Diaspar
Software Services; me@jbrains.info

Requirements: Neil Maiden, City University,
London; n.a.m.maiden@city.ac.uk

Software Technology: Christof Ebert, Vector
Consulting; christof.ebert@vector-consulting.de

Tools of the Trade: Diomidis Spinellis, Athens
Univ. of Economics and Business; dds@aueb.gr

User Centric: Jeff Patton,
ThoughtWorks; jpatton@acm.org

advisory board

Stephen Mellor, consultant (chair)
Jennitta Andrea, ClearStream Consulting

Elisa Baniassad, Chinese University of Hong Kong
J. David Blaine, independent consultant

Ward Cunningham, AboutUs
David Dorenbos, consultant

Kaoru Hayashi, SRA
Simon Helsen, SAP

Juliana Herbert, ESICenter Unisinos
Gargi Keeni, Tata Consultancy Services

Karen Mackey, Cisco Systems
Steve McConnell, Construx Software

Erik Meijer, Microsoft
Bret Michael, Naval Postgraduate School
Ann Miller, University of Missouri, Rolla

Deependra Moitra, Infosys Technologies, India
Frances Paulisch, Siemens

Linda Rising, independent consultant
Wolfgang Strigel, independent consultant

Dave Thomas, Bedarra Research Labs
Laurence Tratt, Bournemouth University

Jeffrey Voas, SAIC
Markus Völter, independent consultant

support by integrated development environ-
ments, lack of extensive libraries, instabil-
ity, installation difficulty, lack of debuggers
and profilers, lack of training, disinterest in
software engineering methods, and lack of
a track record in credible projects.

In recent years, some barriers have fallen.
Undoubtedly, interest from the likes of Mi-
crosoft and Google has put functional pro-
gramming on the practitioner’s map. Other
barriers, however, appear intact. I haven’t
seen much talk of development practices
and methods geared toward functional pro-
gramming. I don’t know whether anyone
has thought about test-driving functional
programs or building in-process testing
frameworks that respect and leverage func-
tional-programming principles. The math-
ematical concepts underlying functional
programming—monads, closures, lambda
expressions, currying, comprehensions,
and such—still intimidate programmers.

Still, things are looking up for functional
languages. Perhaps Microsoft’s drive to sup-
port LINQ (a functional-programming-
based integrated query model), extend C#
and VisualBasic with functional-program-
ming-friendly constructs, and promote F#
will bring functional programming within
reach of .NET developers. My poll rather
optimistically indicated that only 40 per-
cent of Oopsla delegates never use a func-
tional language. The statistic seemed a bit
low, even for a venue like Oopsla, which
attracts many academics and enlightened
practitioners. One explanation is a too-
liberal interpretation of “functional lan-
guage.” Even though I left interpretation to
the respondents, clarification requests along
the lines “Is X a functional language?” were
nevertheless accompanied by informed
comments such as “X can treat functions as
first-class objects” or “I can use a functional
programming style in X.” Taken together
with such comments, the results pointed to
an awareness level I hadn’t expected.

The future of domain-specific
languages

Another productivity-motivated idea is
domain-specific languages. Martin Fowler
defines a DSL as a programming language
“targeted to a particular kind of prob-
lem,” in contrast to a general-purpose lan-
guage “that’s aimed at [solving] any kind
of software problem” (http://martinfowler.
com/bliki/DomainSpecificLanguage.html).

DSLs leverage the targeted problem do-
main’s particular vocabulary, constraints,
and concepts through specialized environ-
ments, constructs, syntactic sugar, applica-
tion programming interfaces, or a combina-
tion thereof.

DSLs have been attracting renewed at-
tention for good reason, riding on the ris-
ing visibility of functional and dynamic
languages. A noteworthy case is Google’s
Sawzall, a DSL for massively parallel data
analysis. (Sawzall is an implementation,
and progression, of Google’s MapReduce
programming model, which in turn is based
on functional-programming concepts.) A
resounding majority of Oopsla delegates
expressed renewed attention when I asked
them about the role DSLs will play in the
near future. We have yet to see how such
high expectations will pan out.

A major enabler of domain specificity
is the much touted amenability of hybrid
languages to creating embedded DSLs. Ex
amples are Ruby (a grassroots language sup-
porting object orientation and dynamism)
and Scala (a research language supporting
OO and functional programming). For an
instance of a DSL embedded in Ruby, see
the September/October 2007 issue’s focus
section on dynamically typed languages.

The language wars
may be over

Developers are warming up to the free-
doms offered by multiparadigm languages.
Improved interoperability through shared
runtime environments, clever hiding of un-
derlying mathematical concepts, and bet-
ter IDE support and integration could well
nudge them over the hump to explore new
territory without entirely abandoning their
home grounds. Those who dunk their toes
could be rewarded by a world of possibilities
previously unimagined. As Bedarra Labs’
Dave Thomas put it, certain niche areas
will probably remain unexplored by masses
because of high entry barriers—most sig-
nificantly, lack of fundamental skills.

The multiparadigm programming trend
is a generalization of Erik Meijer’s and Pe-
ter Drayton’s motto, “Static typing where
possible, dynamic typing when needed.” As
Meijer and Drayton suggest in their simi-
larly titled paper (Oopsla ’04 Workshop on
Revival of Dynamic Languages), the wars
may be coming to an end, if they’re not en-
tirely over. What are your thoughts?

Staff

Senior Lead Editor
Dale C. Strok

dstrok@computer.org

Group Managing Editor
Crystal Shif

Senior Editors
Shani Murray, Dennis Taylor, Linda World

Assistant Editor
Brooke Miner

Publications Administrator
Hilda Carman

software@computer.org

Production Editor
Jennie Zhu

Technical Illustrator
Alex Torres

Associate Publisher
Dick Price

dprice@computer.org

Membership/Circulation Marketing Manager
Georgann Carter

Business Development Manager
Sandra Brown

Senior Production Coordinator
Marian Anderson

Contributing editors

Thomas Centrella, Robert Glass,
Keri Schreiner, Joan Taylor

CS publications board

Jon Rokne (chair), Mike Blaha,
Doris Carver, Mark Christensen, David Ebert,

Frank Ferrante, Phil Laplante, Dick Price,
Don Shafer, Linda Shafer,

Steve Tanimoto, Wenping Wang

magazine operations committee

Robert E. Filman (chair), David Albonesi,
Arnold (Jay) Bragg, Carl Chang,

Kwang-Ting (Tim) Cheng, Norman Chonacky,
Fred Douglis, Hakan Erdogmus, James Hendler,

Carl Landwehr, Dejan Milojicic,
Sethuraman (Panch) Panchanathan,
Maureen Stone, Roy Want, Jeff Yost

Editorial: All submissions are subject to editing for
clarity, style, and space. Unless otherwise stated,
bylined articles and departments, as well as prod-
uct and service descriptions, reflect the author’s or
firm’s opinion. Inclusion in IEEE Software does not
necessarily constitute endorsement by the IEEE or
the IEEE Computer Society.

To Submit: Access the IEEE Computer Society’s
Web-based system, Manuscript Central, at http://
cs-ieee.manuscriptcentral.com/index.html. Be sure
to select the right manuscript type when submit-
ting. Articles must be original and not exceed 5,400
words including figures and tables, which count for
200 words each.

�	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

from the editor

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

