1. Find the displacement u(x,t) of a string, given:

$$u_{tt} = 4 u_{xx}$$
 , $0 \le x \le 2$, $0 \le t$
 $u_x(0,t) = 0$, $u_x(2,t) = 0$
 $u(x,0) = \sin(\pi x)$, $u_t(x,0) = 3$

2. The series of functions below (where it converges) defines the function f(x):

$$f(x) = \sum_{n=1}^{\infty} \frac{(-1)^n}{x^2 + n^2} \cos(n x^n)$$

- (a) For what values of x does the series converge? Justify your answer.
- (b) Does the series converge uniformly where it converges? Justify your answer.
- (c) Is f(x) continuous? Justify your answer.
- (d) Is f(x) a periodic function? If so, what is the period?
- (e) Is f(x) even, odd, or neither?
- 3. Given the two functions

$$h(t) = \begin{cases} t, & -4 \le t \le 0 \\ 0, & t < -4 \& t > 0 \end{cases}$$

$$g(t) = \begin{cases} e^{-2t}, & 2 \le t \\ 0, & t < 2 \end{cases}$$

- (a) Sketch h(t) and g(t).
- (b) Compute (from the definition) the convolution: (h*g)(t). [Hint: carefully consider the different cases; sketches for various t may help.]
- (c) Find H(f), the Fourier Transform of h(t), by using the definition of the Fourier Transform (i.e., evaluate the integral).
- (d) Find G(f), the Fourier Transform of g(t), by using the Fourier tables and properties.
- (e) Using the convolution theorem and your previous answers, what is the Fourier Transform of the convolution: $\mathcal{F}\{(h*g)(t)\}$?

SEE OTHER SIDE FOR REMAINING PROBLEMS