Consider the cartesian product $H=\mathbb{Z}_{2} \times \mathbb{Z}_{n}$ (as a set). Define a binary operation on H to be

$$
(\bar{i}, \bar{j}) \cdot(\bar{k}, \bar{l})=\left(\bar{i}+\bar{k},(-1)^{k} \bar{j}+\bar{l}\right)
$$

Show that H is a group under this operation, and determine its order.
Let $G=\left\langle a, b \mid a^{n}=1, b^{2}=1, a b a b^{-1}=1\right\rangle$. Show that $|G| \leq 2 n$.
Show that $H \cong G$

