001 (part 1 of 3)

The magnetic field over a certain range is given by $\vec{B} = B_x \hat{\imath} + B_y \hat{\jmath}$, where $B_x = 3$ T and $B_y = 7$ T. An electron moves into the field with a velocity $\vec{v} = v_x \hat{\imath} + v_y \hat{\jmath} + v_z \hat{k}$, where $v_x = 1$ m/s, $v_y = 8$ m/s and $v_z = 6$ m/s.

The charge on the electron is -1.602×10^{-19} C.

What is the \hat{i} component of the force exerted on the electron by the magnetic field? Answer in units of N.

002 (part 2 of 3)

What is the \hat{j} component of the force? Answer in units of N.

003 (part 3 of 3)

What is the \hat{k} component of the force? Answer in units of N.

004

A segment of wire carries a current of 20 A along the x axis from x = -6 m to x = 0 and then along the z axis from z = 0 to z = 7.2 m. In this region of space, the magnetic field is equal to 51 mT in the positive z direction.

What is the magnitude of the force on this segment of wire? Answer in units of N.

005

An 6.79 m long copper wire with a cross-sectional area of 5.07×10^{-5} m², in the shape of a square loop, is connected to a 0.1011 V battery. The resistivity of copper is $2.8 \times 10^{-8} \Omega \,\mathrm{m}$.

If the loop is placed in a uniform magnetic field of magnitude $0.556~\mathrm{T}$, what is the maximum torque that can act on it? Answer in units of N m.

006 (part 1 of 2)

An electron circles at a speed of 11400 m/s in a radius of 1.22 cm in a solenoid. The magnetic field of the solenoid is perpendicular to the plane of the electron's path.

The charge on an electron is 1.60218×10^{-19} C and its mass is 9.10939×10^{-31} kg.

Find the strength of the magnetic field inside the solenoid. Answer in units of T.

007 (part 2 of 2)

Find the current in the solenoid if it has 28.6 turns/cm. Answer in units of mA.