- 1. Let Y be a topological space, Γ —a family of functions $f: X \to Y$. Assume X has a I'-topology on it.
- (a) Prove that $x_n \to x$ in X if and only if $f(x_n) \to f(x)$ in Y for all $f \in \Gamma$.
- (b) Suppose Z is a topological space. Prove that $g:Z\to X$ is continuous if and only if $f \circ g: Z \to Y$ are continuous for all $f \in \Gamma$.
- 2. Let K be a closed and convex subset of a locally convex topological vector space X. topology on X then there will be closed sets in X that are not closed in X_w . So, convexity Prove that K is also closed in X_w . Notice that if topology in X_w is strictly weaker than plays a very important role
- 3. Let X be a topological vector space. Prove that X_{w*}^* is a locally convex topological vector