[image: image1.jpg]TEMP is the name of a memory cell picked by the compiler to hold the
result (Y + Z). Whenever the compiler creates one of these temporary vari-
ables, it must also remember to generate memory space for it using the
DATA pseudo-op

TEMP: .DATA 0
In addition, the compiler records the name (TEMP) and the data type
(integer) of the result in the semantic record associated with this new

nonterminal called <expression>. Here is what is produced by this branch
of the parse tree:

Parse Tree Semantic Record Code

<expression> + <variable> z I integer ' LOAD Y
\ ADD Z

/ STORE TEMP

<oxm'“‘°"\>_/ ""PI integer ‘ TEMP: DATA 0

The final branch of the parse tree builds the nonterminal called <assignment
statement>:

Semantic Record Parse Tree Semantic Record

x | integer <varioble> = <expression> integer
N

<assignment statement> (not yet filled in)

This production is translated into machine language by loading the
value of the <expression> on the righthand side of the assignment opera-
tor, using a LOAD instruction, and storing it, via a STORE operation, into
the <variable> on the lefthand side of the assignment operator. Again, the
names used in the address fields of the machine language instructions are
obtained from the semantic records associated with <variable> and
<expression>. The machine language code generated by this branch of the
parse tree is

LOAD TEMP
STORE X

The compiler must also build the semantic record associated with the newly
created nonterminal <assignment statement>. The name (x) and the data type
(integer) of the variable on the lefthand side of the assignment operator are

CHAPTER 10: Compilers and Language Translation

[image: image2.jpg]copied into that semantic record because the value stored in that variable is
considered the value of the entire assignment statement.

Semantic Record Parse Tree Semantic Record Code

P x | W" <varicble> = <oxpuwon> | ' LOAD TEMP
\ | / STORE X
<osugnmomucmm> * | '

Our compiler has now analyzed every branch in the parse tree, and it has
produced the following translation. (We have separated the pseudo-ops and
executable instructions for clarity.)

LOAD Y
ADD Z
STORE TEMP
LOAD TEMP
STORE X

X: .DATA 0

Y: .DATA 0

7L .DATA 0

TEMP: .DATA 0

This is an exact translation of the assignment statement x = y + .

Figure 10.11 shows the code generation process for the slightly more com-
plex assignment statement x = x + y + z. The branches of the parse tree are
labeled and referenced by comments in the code. (The parse tree was con-
structed using the grammar shown in Figure 10.8.)

The code of Figure 10.11 could represent the end of the compilation
process, because generating a correct machine language translation was our
original goal. However, we are not quite finished. In the beginning of the
chapter, we said that a compiler really has two goals: correctness and effi-
ciency. The first goal has been achieved, but not necessarily the second. We
have produced correct code, but not necessarily good code. Therefore, the
next and final operation is optimization, where the compiler polishes and
fine-tunes the translation so that it runs a little faster or occupies a little
less memory.

S R

10.2 The Compilation Process LEVEL 4 | 501

[image: image3.jpg]0.11

Code Generation for the Assign- Parse Tree

ment Statement xex+y+z o = - + y P z

A A

<variable> <variable> <variable> <variable>

<expression>

o\

<expression>

=3

<expression>

g

<assignment statement>
Generated Code

~Here is the code for the production labeled B

LOAD X

ADD Y

STORE TEMP -- Temp holds the expression (x + y)
~Here is the code for the production labeled C

LOAD TEMP

ADD Z

STORE TEMP2 -- Temp2 holds (x + y + 2)
~Here is the code for the production labeled D

LOAD TEMP2
STORE X - X now holds the correct result
- The remainder of the program goes here
~These next three pseudo-ops are generated by the productions labeled A
DATA 0
Y: .DATA 0
Z: DATA 0
- The pseudo-ops for these temporary variables are generated
by productions B and C
TEMP: .DATA 0
TEMP2: .DATA 0
) .
LEVEL 4 CHAPTER 10: Compilers and Language Translation

