[image: image1.jpg]|

the compiler can generate machine language instructions to carry out this
addition. If, however, the parse tree and its associated semantic records
looked like this:

/\. /\\
B l double ' <expression> + <expression> b | chor '
NI,/

<expression> temp ? '

the compiler determines that this is not a meaningful operation, because
addition is not defined between a real number and a character. The compiler
rejects this parse tree for semantic rather than syntactical reasons.

Thus, the first part of code generation involves a pass over the parse tree
to determine whether all branches of the tree are semantically valid. If so,
then the compiler can generate machine language instructions. If not, there is
a semantic error, and generation of the machine language is suppressed
because we do not want the processor to execute meaningless code. This step
is called semantic analysis.

Following semantic analysis, the compiler makes a second pass over the
parse tree, not to determine correctness but to produce the translated code.
Each branch of the parse tree represents an action, a transformation of one or
more grammatical objects into other grammatical objects. The compiler must
determine how that transformation can be accomplished in machine language.
This step is called code generation.

Let's work through the complete semantic analysis and code generation
process using the parse tree for the assignment statement x = y + z, where x, y,
and z are all integers. The example uses the instruction set shown in Figure 6.5.

<variable> <variable> <variable>

<expression>

N\

<expression>

e

<assignment statement>

L i | : o

10.2 The Compilation Process LEVEL 4 | 497

[image: image2.jpg]Typically, code generation begins at the productions in the tree that are near-
est to the original input tokens. The compiler takes each production and, one
branch at a time, translates that production into machine language operations or
data generation pseudo-ops. For example, the following branch in the parse tree:

y
<variable>
can be implemented by allocating space for the variable y using the .DATA
pseudo-op
Y: .DATA 0

In addition to generating this pseudo-op, the compiler must build the initial
semantic record associated with the nonterminal <variable>. This semantic
record contains, at a minimum, the name of this <variable>, which is y, and its
data type, which is integer. (The data type information comes from the int
declaration, which is not shown.) Here is what is produced after analyzing and
translating the first branch of the parse tree:

Parse Tree Semantic Record Code
¥

<variable> y I integer l Y: .DATA O

Identical operations are done for the branches of the parse tree that produce
tlwmnteminalmﬂabbﬁomﬂ\esymbolsxandz,leadmgtot}wfouwmg
situation:

Productions: x y z

<voriobh>> <vorioblo>> <voriablo>>

Somanﬁckocords:xlw' ylw' zlw'

Code: X: .DATA 0
Y: .DATA 0
Z .DATA 0

T Al | 2 .
FI LEVEL 4 CHAPTER 10: Compilers and Language Translation

[image: image3.jpg]The production that transforms the nonterminal <variable> generated
from y into the nonterminal <expression>:

<variable>

<expression>

does not generate any machine language code. This branch of the tree is really
just the renaming of a nonterminal to avoid the ambiguity problem discussed
earlier. This demonstrates an important point: Although most branches of a parse
tree produce code, some do not. Although no code is produced, the compiler
must still create a semantic record for the new nonterminal <expression>. It is
identical to the one built for the nonterminal <variable>.

Parse Tree Semantic Record Code
<vofioblo>/_\ Y | integer l None generated

<0xpr«sion>/_\ y | integer '

The branch of the parse tree that implements addition:

Semantic Record Parse Tree Semantic Record

ol Ve
y l integer ' <expression> + <variable> z I integer ‘
N\~

<expression> (not yet filled in)

can be translated into machine language using the assembly language instruction
set presented in Section 6.3.1. The compiler loads the value of <expression> into
a register, adds the value of <variable>, and stores the resulting <expression>
into a temporary memory location. This can be accomplished using the LOAD,
ADD, and STORE operations in our instruction set. The names used in the address
field of the instructions are determined by looking in the semantic records asso-
ciated with the nonterminals <expression> and <variable>. The code generated
by this branch of the parse tree is

LOAD Y
ADD Z
STORE TEMP

=ﬂf'l . ‘; @
10.2 The Compilation Process LEVEL 4 | 499

*-

