Use a u-substitution to evaluate the following integral:

$$
\int_{\pi / 12}^{\pi / 6} \frac{1}{\tan (2 \theta) \cdot \cos ^{2}(2 \theta)} d \theta
$$

Solution:

We want to try to find a u-substitution that will make it possible for us to evaluate the resulting u-integral.
Let's take a look at the denominator of the integrand:

$$
\tan (2 \theta) \cdot \cos ^{2}(2 \theta)
$$

At first glance, we might think of using $u=\cos (2 \theta)$, which would give

$$
d u=[-\sin (2 \theta)] \cdot(2 d \theta)=-2 \sin (2 \theta) d \theta
$$

Therefore,

$$
d \theta=\frac{d u}{-2 \sin (2 \theta)}
$$

We have to express $-2 \sin (2 \theta)$ in terms of u. Well, we know that

$$
\sin ^{2}(2 \theta)+\cos ^{2}(2 \theta)=1,
$$

hence

$$
\sin (2 \theta)= \pm \sqrt{1-\cos ^{2}(2 \theta)}
$$

Now the interval over which we're integrating (in terms of θ) is

$$
\left[\frac{\pi}{12}, \frac{\pi}{6}\right],
$$

hence

$$
\frac{\pi}{6} \leq 2 \theta \leq \frac{\pi}{3}
$$

Since

$$
0<\frac{\pi}{6}<\frac{\pi}{3}<\frac{\pi}{2},
$$

we see that 2θ lies in the first quadrant for every angle θ in that interval. Therefore, $\sin (2 \theta)$ is positive for every angle θ in that interval, hence we use the positive square root:

$$
\sin (2 \theta)=\sqrt{1-\cos ^{2}(2 \theta)}
$$

By definition, $\cos (2 \theta)=u$, so

$$
\sin (2 \theta)=\sqrt{1-u^{2}}
$$

Thus

$$
-2 \sin (2 \theta)=-2 \sqrt{1-u^{2}}
$$

so

$$
d \theta=\frac{d u}{-2 \sqrt{1-u^{2}}}
$$

We still have to express $\tan (2 \theta)$ in terms of u. Using the fact that

$$
\tan (2 \theta)=\frac{\sin (2 \theta)}{\cos (2 \theta)}
$$

we find that

$$
\tan (2 \theta)=\frac{\sqrt{1-u^{2}}}{u}
$$

Another thing we need to do is convert the θ-limits of integration to u-limits of integration. Since $u=\cos (2 \theta)$, we get the following:

$$
\begin{aligned}
\theta=\frac{\pi}{12} \quad \Longrightarrow & =\cos \left(2 \cdot \frac{\pi}{12}\right) \\
& =\cos \left(\frac{\pi}{6}\right) \\
& =\frac{\sqrt{3}}{2} \\
\theta=\frac{\pi}{6} \quad \Longrightarrow \quad u & =\cos \left(2 \cdot \frac{\pi}{6}\right) \\
& =\cos \left(\frac{\pi}{3}\right) \\
& =\frac{1}{2}
\end{aligned}
$$

Converting everything in the given θ-integral from θ to u, we obtain

$$
\begin{aligned}
\int_{\pi / 12}^{\pi / 6} \frac{1}{\tan (2 \theta) \cdot \cos ^{2}(2 \theta)} d \theta & =\int_{\sqrt{3} / 2}^{1 / 2} \frac{1}{\left[\frac{\sqrt{1-u^{2}}}{u}\right] \cdot u^{2}}\left[\frac{d u}{-2 \sqrt{1-u^{2}}}\right] \\
& =\int_{\sqrt{3} / 2}^{1 / 2}\left(-\frac{1}{2}\right) \frac{d u}{u\left(1-u^{2}\right)}
\end{aligned}
$$

After all that work, we end up having to integrate the function

$$
\left(-\frac{1}{2}\right) \frac{1}{u\left(1-u^{2}\right)}
$$

which isn't something whose antiderivative we could immediately write down.
However, it turns out that there's a u-substitution that would make it easier to evaluate the original integral.

Our original integrand is

$$
\frac{1}{\tan (2 \theta) \cdot \cos ^{2}(2 \theta)}
$$

Recall that

$$
\frac{1}{\cos (2 \theta)}=\sec (2 \theta)
$$

so

$$
\frac{1}{\cos ^{2}(2 \theta)}=\sec ^{2}(2 \theta)
$$

and we can write the original integral as

$$
\int_{\pi / 12}^{\pi / 6} \frac{\sec ^{2}(2 \theta)}{\tan (2 \theta)} d \theta
$$

Now let's let $u=\tan (2 \theta)$. Then

$$
d u=\frac{d}{d \theta}(\tan (2 \theta)) d \theta
$$

Recall that

$$
\frac{d}{d \theta}(\tan (2 \theta))=\left[\sec ^{2}(2 \theta)\right] \cdot 2=2 \sec ^{2}(2 \theta)
$$

so

$$
d u=2 \sec ^{2}(2 \theta) d \theta
$$

and

$$
\sec ^{2}(2 \theta) d \theta=\frac{d u}{2}
$$

Now let's convert our θ-limits of integration to u-limits of integration.
Since $u=\tan (2 \theta)$, we get the following:

$$
\begin{aligned}
\theta=\frac{\pi}{12} \Longrightarrow u & =\tan \left(2 \cdot \frac{\pi}{12}\right) \\
& =\tan \left(\frac{\pi}{6}\right) \\
& =\frac{\sin (\pi / 6)}{\cos (\pi / 6)} \\
& =\frac{\left(\frac{1}{2}\right)}{\left(\frac{\sqrt{3}}{2}\right)} \\
& =\frac{1}{\sqrt{3}}
\end{aligned}
$$

$$
\begin{aligned}
\theta=\frac{\pi}{6} \Longrightarrow u & =\tan \left(2 \cdot \frac{\pi}{6}\right) \\
& =\tan \left(\frac{\pi}{3}\right) \\
& =\frac{\sin (\pi / 3)}{\cos (\pi / 3)} \\
& =\frac{\left(\frac{\sqrt{3}}{2}\right)}{\left(\frac{1}{2}\right)} \\
& =\sqrt{3}
\end{aligned}
$$

Converting everything in the given θ-integral to a u-integral, we have

$$
\begin{aligned}
\int_{\pi / 12}^{\pi / 6} \frac{1}{\tan (2 \theta) \cdot \cos ^{2}(2 \theta)} d \theta & =\int_{\pi / 12}^{\pi / 6} \frac{\sec ^{2}(2 \theta)}{\tan (2 \theta)} \cdot d \theta \\
& =\int_{1 / \sqrt{3}}^{\sqrt{3}} \frac{1}{u} \cdot \frac{d u}{2} \\
& =\left(\frac{1}{2}\right)[\ln |u|]_{1 \sqrt{3}}^{\sqrt{3}} \\
& =\left(\frac{1}{2}\right)[\ln (\sqrt{3})-\ln (1 / \sqrt{3})]
\end{aligned}
$$

Using the rule of logarithms which states that

$$
\ln (a)-\ln (b)=\ln (a / b)
$$

and setting a to $\sqrt{3}$ and b to $1 / \sqrt{3}$, we obtain

$$
\int_{\pi / 12}^{\pi / 6} \frac{1}{\tan (2 \theta) \cdot \cos ^{2}(2 \theta)} d \theta=\left(\frac{1}{2}\right) \ln \left[\frac{\sqrt{3}}{\left(\frac{1}{\sqrt{3}}\right)}\right]
$$

To simplify the fraction

$$
\frac{\sqrt{3}}{\left(\frac{1}{\sqrt{3}}\right)}
$$

we multiply the numerator $(\sqrt{3})$ by the reciprocal of the denominator. Since the denominator is $1 / \sqrt{3}$, its reciprocal is $\sqrt{3}$, so

$$
\frac{\sqrt{3}}{\left(\frac{1}{\sqrt{3}}\right)}=\sqrt{3} \cdot \sqrt{3}=3
$$

Using this result, we find that

$$
\int_{\pi / 12}^{\pi / 6} \frac{1}{\tan (2 \theta) \cdot \cos ^{2}(2 \theta)} d \theta=\left(\frac{1}{2}\right) \ln (3)
$$

We can further simplify this by using the rule of logarithms which states that

$$
c \ln (d)=\ln \left(d^{c}\right)
$$

and setting c to $1 / 2$ and d to 3 , hence we get

$$
\int_{\pi / 12}^{\pi / 6} \frac{1}{\tan (2 \theta) \cdot \cos ^{2}(2 \theta)} d \theta=\ln \left(3^{1 / 2}\right)=\ln (\sqrt{3})
$$

