
Use a u-substitution to evaluate the following integral:
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tan.2�/ � cos2.2�/
d�

Solution:

We want to try to find a u-substitution that will make it possible for us to evaluate the

resulting u-integral.

Let’s take a look at the denominator of the integrand:

tan.2�/ � cos2.2�/

At first glance, we might think of using u D cos.2�/, which would give

du D Œ� sin.2�/� � .2 d�/ D �2 sin.2�/ d�

Therefore,

d� D du

�2 sin.2�/

We have to express �2 sin.2�/ in terms of u. Well, we know that

sin2.2�/ C cos2.2�/ D 1;

hence

sin.2�/ D ˙
p

1 � cos2.2�/

Now the interval over which we’re integrating (in terms of �) is
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we see that 2� lies in the first quadrant for every angle � in that interval. Therefore,

sin.2�/ is positive for every angle � in that interval, hence we use the positive square

root:

sin.2�/ D
p

1 � cos2.2�/

By definition, cos.2�/ D u, so

sin.2�/ D
p

1 � u2

Thus

�2 sin.2�/ D �2
p

1 � u2;

so

d� D du

�2
p

1 � u2



We still have to express tan.2�/ in terms of u. Using the fact that

tan.2�/ D sin.2�/

cos.2�/
;

we find that

tan.2�/ D
p

1 � u2

u

Another thing we need to do is convert the �-limits of integration to u-limits of inte-

gration. Since u D cos.2�/, we get the following:
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Converting everything in the given �-integral from � to u, we obtain

Z �=6

�=12

1

tan.2�/ � cos2.2�/
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After all that work, we end up having to integrate the function

�

�1
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�

1

u.1 � u2/
;

which isn’t something whose antiderivative we could immediately write down.

However, it turns out that there’s a u-substitution that would make it easier to evaluate

the original integral.



Our original integrand is
1

tan.2�/ � cos2.2�/

Recall that
1

cos.2�/
D sec.2�/;

so
1

cos2.2�/
D sec2.2�/

and we can write the original integral as
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Now let’s let u D tan.2�/. Then

du D d

d�
.tan.2�// d�

Recall that
d

d�
.tan.2�// D Œsec2.2�/� � 2 D 2 sec2.2�/;

so

du D 2 sec2.2�/ d�

and

sec2.2�/ d� D du
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Now let’s convert our �-limits of integration to u-limits of integration.

Since u D tan.2�/, we get the following:
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Converting everything in the given �-integral to a u-integral, we have
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Using the rule of logarithms which states that

ln.a/ � ln.b/ D ln.a=b/;

and setting a to
p

3 and b to 1=
p

3, we obtain
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To simplify the fraction p
3
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we multiply the numerator (
p

3) by the reciprocal of the denominator. Since the de-
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Using this result, we find that
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We can further simplify this by using the rule of logarithms which states that

c ln.d/ D ln.d c/;

and setting c to 1=2 and d to 3, hence we get
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