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Use the power series
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to determine a power series, centered at 0, for the function. Identify the interval of convergence.
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Use the power series
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to determine a power series, centered at 0, for the function. Identify the interval of convergence.

1
iy

O -15xs1
O -1<x<1
O x=0




image7.png
Use the definition of Taylor series to find the Taylor series (centered at c) for the function.
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Use the definition of Taylor series to find the Taylor series (centered at c) for the function.
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Use the binomial series to find the Maclaurin series for the function.
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Find the Maclaurin series for the function. (Use the table of power series for elementary functions.)
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Find the Maclaurin senes for the function. (See the Multipication and Division of Power Senes Example.)
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Write the power series for (1 + x) in terms of binomial coefficients.
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Find a geometric power series for the function, centered at 0, by the following methods.
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(a) by the technique shown in Examples 1 and 2

=3

o

(b) by long division (Give the first three terms.)
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Find a power series for the function, centered at c and determine the interval of convergence.
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Find a power series for the function, centered at ¢ and determine the interval of convergence.
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