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Game Theory

Game Theory II

4.  Matrix Games: Mixed Strategies


In the previous section we have seen that some matrix games cannot be solved in pure strategies.  In this case we can proceed to solve the game in mixed strategies.  Unlike pure strategies, a solution in mixed strategies can always be guaranteed.  This guarantee is known as the Minimax Theorem or Neumann’s Theorem.  We do not explain or prove it here, just note that it is connected to the concept of duality in Mathematical Programming and refer to Winston for more details. 

The central idea of this approach is that players may choose a strategy randomly.  If a game is played repeatedly, a solution would be the frequencies of choosing particular strategies.  Let xi denote the probability of choosing strategy i by player 1 and similarly for yj and player 2.  Then, the total (expected) pay-off of player 1 is (m (n xi rij yj, where rij is the appropriate entry in the reward matrix.  (Pay-off for player 2 is –(m (n xi rij yj.)  We can solve all matrix games using mixed strategies, however the solution procedure relies on mathematical programming and thus we restrict ourselves to some special cases only.   


This strategy concept is fairly intuitive for games played repeatedly.  You win some and lose some, but over a time period your expected gains are likely to tend to  (m (n xi rij yj.  The random element is there so that your opponent cannot guess what you will do.  However, it is rather more difficult to accept this as a reasonable strategy for games played only once.  Business managers would shudder at the thought of tossing a coin before making a business decision.  One simply has to get used to a more probabilistic world-view than our usual deterministic one.  


We can solve some small-scale games using a graphical method if at least one of the players have two available strategies only.  First, we note that some games can be reduced to this format.  To show this, we introduce the idea of domination.  A strategy (i.e. a row or a column) is dominated if the relevant player can always find another row/column for which his/her pay-offs are better for all choices of the other player.  (This is similar to the idea of dominated actions in section 2.)  A dominated row or column can always be deleted from a reward matrix, thus reducing its size.  If we manage to reduce the choices of at least one of the players to two, then the special solution methods of the following two sections can be applied to find solutions. 


See section 14.2 of Winston for more details.  (For the Minimax Theorem, see section 14.3 – you may also need to refer back to Chapter 6.) 

5. Mixed strategies solution for 2(2 games 

There is a special solution method for 2(2 games. Consider the payoff matrix A = 
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 and let d(A) = a+d–b–c.  It can be shown that the optimal frequencies of player 1 are x1 = (d–c)/d(A), x2 = (a–b)/d(A) and the optimal frequencies of player 2 are y1 = (d–b)/d(A), y2 = (a–c)/d(A).  The value of this game is v = (ad–bc)/d(A).   

Consider the game of two-finger morra.  Anna and Beppe simultaneously stick up either one or two fingers.  If the sum of fingers shown is odd, Anna wins £1 from Beppe; if it is even, Beppe wins £1 from Anna.  It is easy to see that this is a zero-sum game without a saddle point.  The payoff matrix is 
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.  The optimal solution is that both players should stick up one or two fingers with equal probability.  (If the game is played repeatedly, Anna and Beppe should both stick up one finger half the time and two fingers the other half.)  The value of the game is 0 (a fair game). 

In the following game, Sherlock Holmes is chased by his mortal enemy Professor Moriarty and decides to take a train from London to Dover to escape to the continent.  However just as his train pulls out he spots Moriarty at the platform who also notices him.  Holmes is sure that Moriarty will charter a train to chase him and has two choices: get off in Canterbury (the only stop) or go to Dover.  Moriarty can similarly direct the charter train to go to Canterbury or to Dover.  If Moriarty catches Holmes, he will kill him.  If Holmes gets off in Canterbury and Moriarty goes to Dover, Holmes is cut off from escaping to the continent.  A possible reward matrix for Holmes, consistent with the above, can be as follows:    


Moriarty


Canterbury
Dover

Holmes
Canterbury
0 (dead) 
½ (stuck in England)


Dover
1 (escaped)
0 (dead)

This game does not have a solution in pure strategies for this or any other sensible set of rij.  The mixed strategies solution is that Holmes should get off in Canterbury with probability ⅔ and Moriarty should go to Canterbury with probability ⅓.  (In the story, Sherlock Holmes gets off en route and watches Moriarty’s charter train hurtling past towards Dover.) 

6.   Mixed strategies solution for 2(n and m(2 games 


Suppose now that we have a game with 2 rows and n columns.  If it has no saddle point, then we proceed as follows.  We plot player 1’s expected pay-offs for all choices of strategies of player 2, as a function of x1, the frequency of choosing strategy (row) 1.  Then we find the maximum point of the lowest curve formed by these lines.  The x1 co-ordinate of this point gives the optimum frequency of choosing strategy 1 for player 1.  Player 1 then chooses strategy 2 with frequency 1–x1.  The value of the curve at the maximum point gives v, the value of the game in mixed strategies.


Any strategies of player 2 that do not correspond to the lines meeting at the maximum point above can now be deleted from the matrix, thus usually producing a    2 ( 2 matrix.  Such matrices can be solved by the method outlined in the previous section.  (It may be possible for more than two lines to interest at this point, resulting in multiple optima.  See section 12.4.3 of Taha to find out how to deal with this.)


Consider the payoff matrix 
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.  By plotting 5–5x1, 4–6x1 and –3+5x1 on [0,1] we find the maximin point at x1 =7/11.  This already gives us the optimal strategy of player 1 as 
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.  Observe that 5–5x1 does not contribute to the maximin point and thus the game can be reduced to 
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.  This yields the optimal strategy of player 2 as 
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We note that m ( 2 games can be solved in a similar manner.  We plot player 2’s expected pay-offs for all choices of strategies of player 1, as a function of y1, the frequency of choosing strategy (column) 1.  Then we find the minimum point of the highest curve formed by these lines.  The y1 co-ordinate of this point gives the optimum frequency of choosing strategy 1 for player 2.  Player 2 then chooses strategy 2 with frequency 1–y1.  The value of the curve at the minimum point gives v.  Any strategies of player 1 that do not correspond to the lines meeting at the minimum point above can now be deleted from the matrix, thus usually producing a 2 ( 2 matrix to be solved by the method of the previous section. 


Consider the payoff matrix 
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.  By plotting 4–2y1, 3–y1, 2+y1 and 6–8y1 on [0,1] we find the minimax point at y1 =2/3.  This already gives us the optimal strategy of player 2 as 
[image: image8.wmf]÷

ø

ö

ç

è

æ

3

1

,

3

2

.  Observe that 3–y1 and 6–8y1 do not contribute to the minimax point and thus the game can be reduced to 
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.  This yields the optimal strategy of player 1 as 
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For further information on this topic, see Winston (section 14.2) and Taha (section 12.4.3.). 
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