4.	In the first year, the area is 1 square meter. In the second year, the plant grows by
	$4\cdot(1/3)^2$. Find a formula for g_n , the amount that the plant grows in the <i>n</i> -th year. (Note
	that g_n is defined only for $n \ge 2$.)

 $g_n =$

5. In the first year, the plant occupies a total of one square meter. In the second year, the plant occupies a total of 1 + 4(1/9) square meters. Find a formula for the total area A_n , that the plant occupies in the n-th year.

 $A_n =$

To simplify your answer, note that you can write your expression in the following form: $1 + a(1 + x + x^2 + ... + x^n)$. Apply the formula

$$1+x+x^2+\ldots+x^n=\frac{1-x^{n+1}}{1-x},$$

which is valid provided $x \neq 1$, to your previous expression to get an answer that is much more simplified.

6. Fill in the following table. Use your calculator to give a decimal approximation (correct to 3 decimal places) of the values for A_n .

n	A_n
1	
2	
3	
4	
5	
10	

From the values in the table, take a guess as to the area as n approaches ∞ :

Is there are correlation between your answer you just gave and the picture of the square plant that you drew?