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Abstract

The foremost crucial step towards a fully automated In-
formation Lifecycle Management (ILM) is to differentiate
information by values in an unbiased manner and under-
stand how values change over time. This paper presents an
information valuation approach that quantifies the value of
a given piece of information based on its usage over time.
Our case study based on several real world NFS file server
traces collected from Harvard University shows that such
a model is simple, effective, and tangible since it relies on
measurable metrics and observable facts. It captures the
changing nature of the file value throughout their lifecy-
cles, reflects the value differences among different files, and
hence allows one to compare and classify files. More im-
portantly, through additional analysis of the model outputs
one can gain new insights into files, e.g., what files are most
valuable and when. We show that files in different value
classes exhibit different characteristics and can be charac-
terized by unique sets of attributes. By devising algorithms
to extract such attributes automatically for different classes
of files, storage systems can predict what class a file would
belong to early in its lifecycle, e.g., at the creation time. The
file valuation, classification, and class membership predic-
tion can then guide a wide range of new optimizations, e.g.,
data placement across tiered storage and data protection.

1. Introduction

1.1. Problem background

The world-wide electronic information is growing at
more than 30% per year, reaching 5.4 Exabytes by year
2002 according to [1]. Such voluminous information poses
new challenges to businesses in managing them to meet
business goals, such as cost, performance, reliability, and
availability, etc. Recent regulatory requirements, e.g.,
Sarbanes-Oxley, HIPAA, and DOD [2, 3, 4], which man-
date corporations to maintain fixed-content reference data
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Figure 1. The three key ILM tasks.

safely for years, impose additional complexity on informa-
tion management. It is not uncommon that businesses deal
with tens of terabytes of such data. Fixed content data often
refers to long lasting data whose content is unchanged after
some initial lifestage, but the data may still be used through-
out its lifecycle, e.g., check images, contract records, X-
Rays, emails, and broadcast contents.

Recognizing that not all corporate information have the
same value and values change over time, Information Life-
cycle Management (ILM), a term coined by IT industry,
aims at capitalizing on the information value differences
throughout their lifecycles to improve system resource uti-
lization and maximize information value automatically for
fixed-content reference data. [5] described history and
scope of ILM. Such automation requires storage systems
to understand what data are important at what time so that
right policies can be applied at the right time. Unfortu-
nately, to date the lack of solid information valuation meth-
ods leaves ILM a wishful thinking rather than reality.

A typical ILM solution often includes tiered storage
hardware and software stack that consists of storage soft-
ware, middle-ware such as content management systems
and databases, and other high level applications such as
SAP. They work together as a whole to manage large vol-
ume of long lasting reference data throughout their life-
cycles to meet business goals and regulatory compliance
requirements. Often ILM-related optimization decisions,
such as where a given piece of information is to be placed,
are made according to the value of information. A piece of
information may be a document, a file, or a database record.
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In our paper, a piece of information refers to a document or
a file. We will examine the effect of information granularity
in the future. ILM includes three key tasks (see Figure 1):
Information valuation lets users measure and compare the
values of different pieces of information unbiasedly. With
such valuation, data characterization and classification
can then be done to guide proper task prioritization and
optimizations. These components are iteratively refined to
adapt to the changing system conditions and user require-
ments. High level user guidance can be useful. Yet, to auto-
mate ILM tasks, significant dependencies on humans must
be avoided. This paper focuses on the first task in ILM,
i.e., developing methodologies to allow storage systems to
automatically calculate information value for fixed-content
reference data with little or no human intervention.

Existing methods for evaluating the value of information
are often crude, case-specific, and human intensive. Some
value information according to vague claims, yet claims
such as “I believe this data is the most important” are often
unsubstantiated and cannot be measured. Others may value
information according to the information age. Section 2
provides a more detailed summary on the prior art. We be-
lieve that for the purpose of ILM for reference data, what
is needed is a generic information valuation model that is
accurate, tangible, sustainable, and adaptive to a wide range
of environments. Furthermore, it must be easily embedded
into a fully automated ILM solution.

1.2. A big picture of our solution

We devised a usage-over-time based information valu-
ation approach (UT for short), which indirectly infers the
information value using the collected information usage
statistics and some high level user guidance whenever ap-
propriate. Under this approach, a system monitor automat-
ically collects knowledge necessary for storage systems to
measure the information value. A valuation model is de-
rived to compute the value of a given piece of information
at a given time. Our approach is based on two fundamental
conjectures: 1. Information value is realized and reflected
through its usage; 2. information value changes over time,
and hence, one never refers to information value without a
reference to a specific time.

One may argue that sometimes usage alone may not be
a strong indicator of information’s intrinsic values. For in-
stance, a million-dollar transaction record is inherently sig-
nificantly more important than a ten-dollar transaction even
if it is not used. However, even in such situations, it is typ-
ically the case that the system activities around the million-
dollar transaction record will be much more than smaller
transactions. Hence, the importance of the large transac-
tions will still be reflected through their actual usage indi-
rectly. Furthermore, usage in our model may cover multiple

aspects of information usage, such as usage count, the usage
time, the source of usage, and the purpose of the usage, etc.,
rather than a single usage aspect alone. Our case study uses
the usage count and recency. We plan to examine additional
usage aspects in the future.

The valuation model is derived from two measurable and
observable metrics: usage and time. Hence the model out-
puts can be substantiated. Usage statistics can be mon-
itored and collected by systems with little human inter-
vention. The model captures both the information value
changes over time and the value differences among infor-
mation. Since the usage patterns themselves are reflective
to system changes, our model is automatically adaptive as
shown by our real world case study.

The information value determines its timeliness of acces-
sibility, reliability, and availability constraints, and drives
ILM management policies and optimizations. Typical ILM
policies range from data retention, placement, and migra-
tion in a tiered storage environment to data protection and
recovery. The tiered storage often include expensive but
fast and reliable high-end storage, cheaper but less reli-
able SATA-based mid-range storage, and low-cost but slow
tapes. Proper ILM data placement and migration policies
must determine when to place or move what data to what
storage devices based on their relative values to a business
throughout information lifecycle phases for maximum re-
source utilization. Similarly, data protection policies such
as synchronous and asynchronous replication, and sched-
uled backup and restore must be applied intelligently for
different classes of data since such policies have tradeoffs
in their cost, performance, and availability guarantees.

With proper valuation, new optimizations are possible.
For instance, a prioritized data recovery scheme can be de-
veloped to recover high value files first to allow the resume
of core business activities, and the less valuable files in the
background later on. This is especially important in disas-
ter situations when relatively large amount of data may be
lost yet only a small subset of them are critical for normal
business functions at a given time period. Most existing re-
covery schemes do not consider such data value differences.

In addition, we make an observation that high value
classes often differentiate themselves through some unique
sets of attributes (that is why they are different from oth-
ers), such as data types or owners. An automated algorithm
can be developed to analyze the valuation outputs and ex-
tract such unique attribute sets for high value classes. We
call such a process the attribution process. Knowing what
attributes characterize high value classes further empowers
the storage system with the ability to predict value class
membership for a given piece of information. For instance,
if it is known that files of particular types and from particu-
lar groups of users are valuable, whenever a file with those
characteristics is created, the system can automatically infer
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its value class and apply appropriate management policies.
On the contrary, if some files are known to be of little value
when they are created, the system can directly put them on
tapes without going through the entire tiered storage migra-
tion path. To our knowledge, no existing Hierarchical Stor-
age Management Systems (HSM) that migrate data across
tiered storage have such capabilities.

Overall, our information valuation model can be used as
system tools or incorporated into system internals as part of
an integrated ILM solution. Integrated system makes it easy
for complete automation. The model performs information
valuation periodically and automatically, such as on a quar-
terly or semi-annually basis. The valuation results will be
used by the data characterization and classification module
to extract key insights and guide ILM tasks such as data
migration and protection.

The key contribution of the paper includes the following:

1. We presented a first-of-the-kind information valua-
tion methodology that infers information value indi-
rectly through information usage-over-time with small
amount of high level user guidance.

2. We demonstrated that the model is simple and adap-
tive, and can be easily integrated into automated sys-
tems since it relies little on human intervention.

3. We validated our model using real world case studies
and showed that the model is effective and robust.

In the rest of the paper, we discuss related work in Sec-
tion 2. We present our baseline information valuation model
in Section 3. We validate the model and analyze the model
sensitivity in different dimensions using the real world NFS
file server traces in Section 4. Section 5 discusses the base-
line model limitations and presents potential future exten-
sions. We conclude and outline future work in Section 6.

2. Related work

Existing ILM solutions often rely on traditional HSM
concepts developed almost a decade ago [6] as the re-
sort for handling data migration issues in ILM. Yet
HSM is only one aspect of ILM. Even for HSM, most
of these solutions migrate data through fixed migration
path along the storage hierarchy based on one of the
two metrics: the last data access time and the data
age. Many examples of such products are available
throughout the storage industry, such as IBM Tivoli Stor-
age Manager (see http://www.ibm.com/software/tivoli/sw-
bycategory/subcategory/SWJ10.html), EMC Legato (see
http://www.legato.com/storage/idm). [7] discussed such a
solution deployed in a real customer environment which
archives files solely based on the file access recency. Files

that have not been accessed for a while are moved from
high-end storage devices to cheap storage devices. Email
archiving solutions often archive data by age.

The above methods work well for strongly time-
dependent data set and they work for HSM-style data mi-
gration policies alone. For other workloads, recency or age
alone may not suffice. Unlike emails, bioinformatics data
may not be important in their initial lifecycle phases, but
they become important when they are used by scientists
later on when doing DNA analysis and discovery. After
that, data may be dormant for some time before a different
kind of analysis is done. Our case study also indicates that
some workloads may be primarily time-dependent while
others are not. Furthermore, data migration and placement
policies are only a subset of ILM policies. What is needed is
a more systematic information valuation approach that col-
lectively accounts for different aspects of information usage
to drive a wide range of ILM policies. We present a valua-
tion model for storage by combining both the usage access
patterns as well as usage recency in one model to infer the
value of data. We do not know of any prior art that com-
bines both such factors for migration or other ILM policies.
Such valuation results can also drive data placement and
data protection and recovery policies. Existing ILM policies
are driven by different system conditions or manual inputs,
not by model-based valuation results.

Proper data classification is considered as the corner-
stone of ILM [8]. The core of data classification lies in
appropriate information valuation. One common data clas-
sification practice is to directly classify information by its
business criticality (called direct methods). However, it is
not clear how one can measure information’s business crit-
icality [8, 9]. Worse yet, defining business criticality is of-
ten not the IT organizations’ expertise, and requires cross-
organizational infrastructure support, which typically does
not exist today. Contrasting to such direct methods, our ap-
proach indirectly measures the information value through
the observed usage-over-time. Hence the results are more
tangible and can be sustained.

[10] discussed classification methods based on the rel-
ative rankings of the applications that produce and use in-
formation. Such methods fail to distinguish data generated
by the same application. Neither can they capture the in-
formation value changes over time. Hence they would only
work for limited cases. Our UT model derives information
value regardless of what applications created or used the in-
formation. Nevertheless, if application ranking knowledge
is easily available, our model can incorporate it as well.

Recognizing the difficulties in data valuation and
classification, storage vendors have also been seek-
ing for data classification services opportunities (see
http://www.emc.com/global services/isc/im consulting).
Such services often involve ongoing expensive, lengthy,
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and labor-intensive analysis of customers’ IT environment,
data usage, and business requirements in order to make
meaningful suggestions on ILM policies for a given
environment. Although such lucrative service opportunities
may be attractive to storage vendors at the beginning, in a
long run low-cost and automatic solution is a must. Our
modeling based approach aims at such a direction.

The criticality of information and its supporting IT in-
frastructure to the business prosperities has been a motivat-
ing factor to drive the understanding of information value
in the business community [11]. [12] and [13] derived the
information value based on a utility model which analyzes
how the information usage leads to actual transactions and
hence revenues through a set of intricate processes. The ap-
proach helps companies to understand the linkage between
information and revenue. But the model is time-consuming,
human-intensive, and hard to adapt to changing situations.
Our UT model also infers the information value through
some form of information usage. But it is uses simple and
tangible metrics and automatically collected system knowl-
edge. In the future, we will explore possibilities to auto-
matically extract business knowledge through working with
high level applications, such as workflow processes to im-
prove our UT model accuracy.

[14] uses historical information cost, such as the cost of
capturing, producing or acquiring information, to calculate
information value for a business. But it fails to consider
how information is used. It tends to support the creation
of more data, rather than more effective use of them. Our
UT model considers the information usage statistics over
time and can incorporate the cost factors easily. [15, 16]
highlighted methods that can be used to measure the value
of knowledge and intellectual properties in order to under-
stand their financial impact on organizations. Such business
focused valuation methods are useful, yet they all require
intense human interaction, special business processes, and
organizational support. Hence they are often hard to imple-
ment. Our UT model avoids such problems.

Like ILM automation, the self-* storage system project
in Carnegie Mellon University aims at automating storage
management tasks through self-managing techniques. [17]
describes how one can classify files based on automatic
learning of file properties using decision tree algorithms.
The work presumes the knowledge of file classes, e.g., zero-
sized files or read-only files. The focus there is to learn what
makes up those classes of files. Unlike self-* storage, we fo-
cus on deriving information valuation models to allow file
classification by values in the first place. Once files are clas-
sified by values, techniques described in [17] may be used
to identify unique attribute sets for different value classes.
Such attribution methods are not the focus of this paper.

3. Information valuation modeling

To provide proper information valuation for ILM au-
tomation, the valuation model must fulfill several key re-
quirements. It must

1. Require little or no human intervention;

2. Rely on tangible and measurable metrics;

3. Be simple and comprehensible to allow users to easily
interpret the valuation outputs and gain insights;

4. Capture key trends in information values: the differ-
ences among information and value changes over time;

5. Adapt to changing environments.

We devised a usage-over-time based information valua-
tion approach, based on the two conjectures as described
in Section 1. A model is derived to compute the value of
a piece of information for a given point of time, called the
present time. The value computed at the present time is
called the present value. The baseline model assumes that
the past usage history serves as an indication of the impor-
tance of the information for the present time �. It indirectly
infers the information value at � by factoring in two key
aspects of information usage, i.e., the recency and the de-
gree of the information usage. A piece of information is
more valuable if it is used more recently and/or it is used
more heavily than others. The degree of usage may be rep-
resented by access frequency, the length of access times,
the significance of the usage to a business as captured by
workflow processes in middle-ware or applications. Not all
such usage factors are available in the storage layer. In this
paper, we built and validate a baseline model for storage
without additional high level application or user guidance
using access frequency and recency factors. Hence it has its
limitations as discussed in Section 5.

An effective model must combine both recency and de-
gree of usage aspects without strong bias towards one as-
pect or another. Meanwhile, it must consider the tradeoffs
between the two. For instance, a piece of information that
was heavily used in the past may not have high value since
the usage occurred long ago. Strong bias towards recency
causes the model to assign high values to recently used data
even if the usage is light. Strong bias towards the degree of
information usage causes the model to assign high values
to heavily used information regardless when the usage oc-
curred. To eliminate such bias, we normalize the recency
and degree of usage factors into a common value scale,
i.e., between 0 and 1. Combining both recency and the de-
gree of usage allows the model to capture information value
changes over time and the differences among information.

Since reference data often have long life times, e.g., mul-
tiple years or months, and the majority of information are
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of little use some time after their births, the model needs
not consider ancient usage history to compute the present
information values. Yet, appropriate amount of usage his-
tory must be considered. Too short a valuation period may
cause the model to fail to account for the past implications
on the future, and hence the model predictions may be less
accurate. We call the time duration that the model uses to
compute the information values at a given time � the valu-
ation period. It often starts from some time before �. The
valuation computed at different times for a given piece of in-
formation will reveal information value changes over time.
Our case study confirms such trends.

In practice, a valid valuation period typically should be
at least a few months for long-lived reference information.
This is because prominent information value changes often
can only be observed in relatively long time intervals for
such data. For instance, check images are often actively
used in the first 30 days of their lifetimes, and are rarely
or never used after 90 days. Too short a valuation period
will not allow the model to capture such information us-
age trends. An effective valuation period can be determined
by repeating the information valuation with increasing val-
uation period values starting from some small number of
months and checking if the information valuation outputs
change significantly. The valuation period is selected once
the valuation outputs no longer change significantly. This
is because increasing valuation period means inclusion of
older usage history information. When the valuation period
is long enough, additional old usage history will not affect
the overall valuation outputs significantly.

The recency and degree of usage are incorporated into
the model through dividing the valuation period into fixed-
length lifestages. We assign different recency weights to
different lifestages and track the usage statistics for each
lifestage individually. The more recent lifestages are as-
signed with higher weights and hence the usage statistics
in those lifestages will contribute more to the final informa-
tion value. All usage instances occurred in a single lifestage
have the same weight. The length of a lifestage affects
the degree to which the model is biased towards recency
or the degree of usage. Coarse lifestages reduce the ef-
fect of recency. When the length of lifestage is equal to
the valuation period, the model essentially ignores the us-
age recency effects completely and determines the informa-
tion value solely by the degree of the information usage.
Short lifestages make it hard to determine appropriate re-
cency weight assignments. In practice, given a valuation pe-
riod, a small number of lifestages is sufficient for the model
to generate reasonably accurate valuation outputs. Hence
the length of the lifestage may be typically on the order of
days or months. Section 4.3 analyzes the model sensitivity
to the length of lifestage using the real world NFS file server
traces. Other alternatives for selecting lifestage lengths are

also possible. However, the key is to assign appropriate
weights to different lifestages. Fixed-length lifestages are
simple and effective as our case study indicates.

The overall valuation model is defined as follows:
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Here ����� is the value of the piece of information, �, at
time �. The valuation period is denoted by 
�, and its du-
ration is �� � �
� � ��� ��. � is the length of each lifestage.

� is the number of lifestages. �������� represents the nor-
malized usage of information � in its lifestage �. Its value
is between 0 and 1. We show an example of normalization
function using our case study later. ���� is the normalized
recency weight for lifestage �. The sum of the weights is �.
The weights are assigned using a weight function as shown
above. Smaller � represents more recent lifestage. Such a
weight function ensures higher weights for recent lifestages.

Given the same 
�, the larger the � is, the steeper the
weight distribution is as shown in Figure 3. Similarly, given
a fixed �, the larger the 
� is, the steeper the weight distri-
bution is. In general, significantly flat or steep weight distri-
butions should be avoided. Flat weight distribution essen-
tially ignores the effect of the usage recency while the steep
distribution considers primarily only the most recent usage
and ignore all the past implications. We examine the model
sensitivity to different weight distributions in Section 4.3.
The key valuation model parameters are the valuation pe-
riod 
�, the lifestage length �, the degree of usage in each
lifestage ��������, and the recency weights ����.

The above model can be further normalized to some
common value scale ���� ���, such as between 1 and 10, for
ease of use as follows:

����� � �

���

���

������ ���������� � ��� ��� (2)

With a common value scale users can understand the infor-
mation value distributions and develop good sense of what
the different value distributions would mean over time.

Note that with our usage-over-time based approach, the
model outputs will match the true information value only if
the usage indeed reflects the value of information. Other-
wise, there is a mismatch between the model-derived value
and the true information value. When the mismatches oc-
cur, besides examining the model itself and correcting it if
necessary, one should also examine other factors such as
system internals and users’ information usage patterns. It
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is possible that improper use of systems, such as wrong
configurations, can lead to wrong usage patterns, and hence
wrong valuation results. In such cases, correcting the wrong
configuration is probably better than the model.

In particular, there are two model output scenarios when
we compare them to the true information value: First, the
model outputs match with the true information values well,
and they can provide users with an indication on whether
files have been properly differentiated. For large volume
of reference data, some task prioritization and data clas-
sification are essential for the health of the system. The
second scenario is that the model outputs do not match the
true information value. Such valuation outputs may imply
that either users have not used the system well, e.g., all
information are used equally without prioritization, or the
system internals have drawbacks that obscured the actual
data differences. System internals may obscure the actual
data differences if they use improper data structures, say.
For instance, the system may store the important data to-
gether with unimportant data in the same file. Whenever
the important data is retrieved, other unimportant data in
the same file may also have to be retrieved. In such cases,
the system internal obscured the actual data difference, and
the model may wrongly consider all data to have the same
value since they have the same usage patterns, although the
reality is not so. It is also possible that the system is always
busy processing unimportant data due to internal drawbacks
or wrong configurations. In such cases, the model outputs
serve as an alarm to users to examine systems more closely.
Indirectly, the model results indicate how well the informa-
tion resource is aligned with the business goals. The more
agreeing the model-derived information value is to the user-
perceived information value, the more the IT resources are
aligned to the business objectives.

4. Case study

In this section, we validate and analyze our model
through a real world case study. We first use our model
to evaluate files in three different NFS file servers in Har-
vard University using 3-month traces. Then we validate and
analyze the model outputs. The differences among these
servers allow us to examine the model generality and adap-
tivity. We show that the model is effective for all three cases.
Although the studied workloads are limited to a university
environment currently, our modeling approach does not de-
pend on any workload-specific knowledge, hence we be-
lieve the methodology is applicable to other workloads as
well. We plan to validate with other workloads in the fu-
ture. The main goals of our case study include the follows:

1. Validate if the model can capture the changes of file
value over time and the value differences among files.

2. Validate if the valuation outputs reflect real file values.

3. Analyze the model sensitivity and robustness to differ-
ent parameter value changes.

4.1. Trace characteristics

Validating our model requires relatively long traces for
large data set. We selected NFS file server traces from Har-
vard University for such reasons. These file servers contain
both production files that are actively modified and used and
a large fraction of reference files. We processed the traces
to contain the reference files as described below. Such file
server environments are representative to many of today’s
customer environments. Often a small fraction of highly
valuable files are cluttered with all other files in a single file
server, or a cluster of file servers. Over time, the volumi-
nous data slows down the file server, causes backup/restore
inefficiency, and hinders the overall system productivity.
This is exactly why proper information valuation is needed.

The three real workload traces are EECS, CAMPUS, and
CAMPUS2. EECS is a trace of research workload from
the computer science department. CAMPUS contains the
workload from the main campus general purpose servers.
This trace is dominated by emails. CAMPUS2 is simi-
lar to CAMPUS, although it is less busy. All three traces
were gathered from 9/1/2001 to 11/30/2001. The trace sizes
for EECS, CAMPUS, and CAMPUS2 are 9.5GB, 48GB,
and 32GB respectively. More information on the traces are
available from [18, 19, 20].

In our evaluation, we are mainly interested in fixed-
content reference files with relatively long life times. We
considered a file’s content to be fixed after its last modifica-
tion as indicated by the mtime of the file. That is, the modi-
fication time denotes the birth time of a fixed-content file. In
practice, if files are still being actively modified, they often
imply that they have not reached their final forms. If they
are overwritten, the old contents are essentially deleted. We
consider the files as new files. A trace processor is writ-
ten to filter out all file operations that happened before the
fixed-content file birth times, as well as files that typically
do not belong to the fixed-content reference data set, e.g.,
short-lived files, cached html files, trash files, etc. We used
file access counts to represent usage in our model. An ac-
cess is either a getattr or a read on a file. Other operations
are not counted since they do not examine the file content
or their metadata. We normalized sequential reads of a file
into one file read request. The final processed trace con-
tains fixed-content reference files and their access opera-
tions. Currently we do not distinguish reads from getattrs in
our valuation.

Table 1 shows the key characteristics of the processed
traces. The number of files shown in Table 1 is the count
of the files appeared in the processed traces. The original
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traces did not contain the baseline file system size informa-
tion. So the file counts shown in Table 1 may be signifi-
cantly smaller than the actual file set sizes. Even so more
than 88% of the the files had zero file access over the 3-
month trace period. These files were looked up but were
never read. This percentage would have been larger should
we use the entire file population. Less than 1% of the files
captures more than 69% of all file accesses. This suggests
that the set of files that are relevant to users at any given
time may typically be a small fraction of the total data set.

EECS CAMPUS CAMPUS2
# of files 2882500 969750 753833
0-access files 88% 92% 92%
high-access files 1% 0.28% 0.23%
% of accesses for 70% 69% 73%
high-access files

Table 1. NFS trace characteristics.

Age (days) EECS CAMPUS CAMPUS2
��� ��� 6% 34% 32%
���� ��� 23% 60% 62%
���� ���� 25% 4% 3%
������� 46% 2% 3%

Table 2. NFS file age distributions. ��� �� indi-
cates an age range that is larger than � and
smaller than or equal to �.

Table 2 showed the file age distributions for the three file
servers. 46% of the EECS files have lived more than 360
days, while most CAMPUS and CAMPUS2 files are short-
lived. Only 6% of the files on CAMPUS and CAMPUS2
live longer than 90 days. This is probably mainly due to the
fact that the disk space allocation on CAMPUS and CAM-
PUS2 file servers is more stringent than on EECS. Students
often have to delete old email folders to make room for
new ones. It also indicates that emails are strongly time-
dependent. Hence their usage heavily depends on their ages,
so are their values as shown in Section 4.2.

4.2. Model validation

To value files in the NFS file servers, we selected the
following model parameter values as defaults after multiple
iterations of robustness analysis. The model always gener-

ates values within the value scale ��� ���.

�� � 	, � � �
 days, �� � ��� �� days� ��

�� � �� 	� � ��, value scale � ��� ���


���� � # of getattrs � # of reads

��
� �
� �� �

���
��� �

�
� �

�

��
����� �

�
�� 
���� � �� ;
�����
��

otherwise.
�� � �� (3)

The usage normalization function ��
����� uses a file ac-
cess count scaling factor, �� , in formula 3, to normalize the
file access counts to values between 0 and 1. Selecting ��

must be done with care since sometimes there may be a few
outlier files that have much higher access counts than oth-
ers. If �� is too high, only those outliers may be assigned
with high values, while all others are assigned with low val-
ues even if there are still significant differences among the
remaining files in reality. Too small an �� will cause the
model to generate high values for most of the files. In gen-
eral, improperly selected �� will cause model to fail to re-
veal the file value differences. In our case study, we filtered
out a small fraction of outliers in the file set and set the
�� value to be the maximum access count of the remaining
files. We study the effect of �� on our model in Section 4.3.

File value changes over time We first validated if our
model is able to capture the file value changes over time.
To do so, we first categorized files based on three different
file access patterns: bursty, periodic, and constant. We con-
sider a file a bursty file if all file accesses happen only in a
short period of time, i.e., 30 days. Emails typically exhibit
bursty patterns. In our traces, more than 80% of the files that
have none-zero accesses exhibit bursty behavior. A file is
periodic if file accesses happen in some regular interval. A
file has a constant access pattern if it is constantly accessed
throughout the valuation period. We found that files such as
login shell configuration files are constantly accessed, such
as on a daily basis, since students often logon to the sys-
tem daily. Files with periodic and constant access patterns
to have small value changes over time. Bursty files should
demonstrate relatively significant value changes. Our re-
sults confirmed this as shown in Figure 2.

We randomly selected 3 files from each access pattern
category and computed the file values on different dates
using a 30-day valuation period and defaults for all other
parameters. Clearly bursty files exhibit significant value
changes over time, while the constant and periodic files
showed small value changes. CAMPUS and CAMPUS2
files are similar. We do not present them here. Among
those three bursty files, bursty1 had high value for about
one month before its value dropped. The other two bursty
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Value changes over time for three types of files in EECS
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Figure 2. File value changes over time. Each
line represents one file. Bursty files have sig-
nificant values changes, while others have
small changes. Const is short for constant.

files had much shorter bursty periods and hence their val-
ues fell much earlier. We also found that the bursts often
happen at the beginning of file lifecycles (more than 80%
of bursty files’ bursts occured at the beginning of their life-
cycles in CAMPUS and CAMPUS2). This suggests that it
may be appropriate to move such files to cheaper storage
media after their bursty periods. As indicated in Figure 2,
for EECS the periodic files all have relatively low values
since the files are only sporadically accessed. The constant
files tend to have high values since they not only are ac-
cessed constantly, the access counts are also relatively high.

File value differences One key goal of information valu-
ation is to be able to differentiate files by their values. Our
traces showed clear differences among files as indicated by
Table 1. Table 3 shows the valuation results by dividing files
into four value classes based on our model outputs. Since
the majority of the files had no accesses at all during the
two-month valuation period, it might have seemed sensible
to simply divide the files into two value classes, one con-
taining all non-zero access files, and the other containing
the remaining files. However, as Table 1 indicated, a large
fraction of the accesses were from a small fraction of highly
popular files, it would still be useful to separate out those
highly popular files from others. This is why we divided
files into 4 value classes rather than 2.

Value class whose value is 1 contains files with zero ac-
cesses in the 60-day valuation period. We computed the file
values as of 10/30/2001 using the default model parameter
values. Across all traces, more than 73% of files had zero
accesses. Less than 2% of files have values larger than 5, yet
they account for more than 62% of the total accesses. The

Value EECS CAMPUS CAMPUS2
1 73%(0) 91%(0) 92%(0)
��� �� 23%(21%) 6%(24%) 6%(26%)
��� �� 2%(12%) 1%(8%) 1%(13%)
��� ��� 2%(67%) 1%(68%) 1%(62%)

Table 3. Value distributions for NFS files. ��� ��
indicates the value range for each value class.
The percentages outside of the parenthesis
represent the percentages of total file counts.
The percentages inside the parenthesis are
the fractions of total access counts.

value class ��� �� is the second largest class because there
are significantly more files in that class, although each file
had only a few accesses. Clearly the valuation results re-
vealed the file value differences and key trends in the data
set.

File valuation output validity Since today users often
do not have a clear understanding of information value,
we cannot directly validate the model outputs against some
known true information values. However, validation can be
done conceptually and indirectly. We hypothesize that dif-
ferent value classes must differentiate themselves through
unique sets of attributes, such as size, name, type, and age,
etc. If we examine the valuation outputs and reason about
what inherent file attributes make some files more valuable
than others and why, we can indirectly validate if the model
outputs reflect the real file values. We have devised an at-
tribution algorithm to extract unique attributes for different
value classes. We do not present such algorithms here since
it is a significant topic all by itself. For reference data, since
typically only a small fraction of data belong to high value
classes, rather than characterizing all value classes, we fo-
cus on the characterization of high value classes.

We extracted the attribute sets for value class ��� ���. We
found that there are several common and unique attributes
that characterize this value class. For EECS, 72% of the
files in this value class have constant access patterns, while
other value classes are dominant by periodic and bursty
files. Many constant files also have relatively long file ages:
37% of the files have longer than 360-day ages. More than
36% of the files are emails and 33% html files. Most of the
html files in this value class had relatively long lives. We
also found that many files from this high value class belong
to specific users and/or groups. For privacy reasons, we do
not disclose the actual user IDs and group IDs in this pa-
per. We found that files from two particular users and four
groups accounted for 15% and 50% of high value files re-
spectively, and their files are often of particular types, such
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as gif, pdf, and others that have the same anonymized file
extensions.

Not all of the above attributes are unique to the high
value class. For instance, some html and mail files also have
low values. If we simply classify all html and mail files as
high value files, the high value class will include some false-
positives, i.e., files whose values are low but were wrongly
classified as high value files. One can reduce false-positives
by examining combinations of attributes. For instance, the
high value html files all exhibit constant access patterns.
This is almost never the case for low value html files. The
combination of file type and access pattern attributes can
more accurately characterize files in the high value class.
Knowing such attributes may empower system to predict
file value class membership. For instance, if a new file that
matches one of the attribute combinations that is used to
characterize the high value class, it is very likely that the
file belongs to a high value class.

In summary, this high value class from EECS file server
indeed can be characterized through a set of common and
unique attributes. The high value class in CAMPUS on the
other hand is dominant by mail files with ages less than
90 days since the main workload on this server is email.
Contrasting to EECS, the CAMPUS files are more bursty.
Hence most of the files have high values in their earlier ages
and the values drop significantly as they grow older. Such
analysis revealed interesting insights into the file sets. Due
to the unfamiliarity of the file server and their user envi-
ronments, we cannot explain all observations. Yet, we are
confident that our valuation is valuable and insightful for
future optimizations.

4.3. Model sensitivity analysis

We analyze the model sensitivity to changes in recency
weight distributions ����, the lifestage length �, and the
scaling factor �� .

Recency weight sensitivity Recency weight distribution
determines how strong the past serves as an indication for
the future. We evaluated three different weight distributions
as shown in Figure 3 with different degree of emphasis on
the past by changing � from ��� to �. Figure 4 showed
how such weight distribution changes affect the file valu-
ation output distribution for EECS. CAMPUS and CAM-
PUS2 are similar. We show how the value class distribution
changed by presenting the percentage of the total accesses
in each value class for all four value classes except for the
value class � that contains zero-access files only.

For EECS files, there is a slight decrease as we changed
� from � to ��� for value class ��� ���. For value class
��� ��, there is a slight increase. This is because for value
class ��� ���, some bursty files’ values are lowered as we

 Weight distributions

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

5 4 3 2 1

Lifestages

We
igh

ts

x = 3 x = 2 x = 1.2

Figure 3. Three different recency weight dis-
tributions with different emphasis on the past
by varying values for �. � � � is the default.
� � ��� distinguishes little between the past
and the present. � � � weights more recent
past more heavily than others.

decreased the weights for the recent past (� � ���). For
value class ��� ��, some constant files gained values as we
assign more weights to the past (� � ���), and their values
fall into value class ��� ��. Overall, the flat weight distribu-
tion (� � ���) made it somewhat harder to distinguish files
as their value differences are smaller. We indicated earlier
that too flat or steep weight distributions create strong bias
towards either the recency or degree of usage aspect, and
should be avoided. When the weight distributions are within
reasonable range (� � � and �), the model outputs do not
change significantly. Hence it is robust to weight changes.
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Figure 4. The effect of recency weight dis-
tribution variation on file value changes for
EECS.
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Lifestage length sensitivity To examine the effect of the
length of lifestages on our model, we varied � from 4 to 16
days with a fixed 60-day valuation period. We are interested
in the model robustness to the changes in �. The more robust
it is, the easier it is to be used in practice. We used the de-
fault recency weight function for all cases. However, there
is a dependent effect since the weight assignments also de-
pends on �� �

��

�
. Since we used a fixed 60-day valuation

period, the recency weights change as we vary the value for
�. Such dependency is not easily removable, so our results
reflect such dependent effects. An alternative is to change
the length of the valuation period, which introduces a dif-
ferent kind of dependent effects. In our study, we tried to
minimize the dependencies as much as possible.

Figure 5 and 6 showed how file value classes changed
as we varied � from 4 to 12 days for EECS and CAM-
PUS files. For EECS, the number of files that belong to the
highest value class increased significantly as we increased
� from 4 to 16 days, so did the percentage of the total ac-
cesses. This is because of the relatively large fraction of
constant files in the higher value classes for EECS. When
we increased the value for �, we naturally increased average
recency weights for all files throughout the 60-day valuation
period. For constant files, since they were accessed through-
out the valuation period, their values increased more dra-
matically than bursty files. For bursty files, higher weights
for some lifestages may not affect the file values much if
there are no or little accesses at all in the those lifestages.
As we decrease the value for �, recency weights decrease
sharply as we move into the past. Hence the past usage
will contribute little to the final file value. Both EECS and
CAMPUS results indicate that small � made it harder for
our model to distinguish files.

For CAMPUS, small � did not affect the model out-
put distribution as significantly as EECS. This is because
CAMPUS is dominated by bursty files and their bursts of-
ten occur at the beginning of their lifecycles. As long as
the model captures the usage statistics in the most recent
lifestages, the model can predict information values reason-
ably well. Longer lifestages would not affect the valuation
outputs much if there are no accesses shortly after the initial
file lifestages anyway. However, we did see some valuation
output differences as we increase � from 4 to 16 days. Af-
ter analyzing the traces, we realize that the typical bursty
periods for CAMPUS files are between 6 to 14 days. Af-
ter that, the accesses become infrequent and eventually be-
come zero. If we use too small an �, such as 4, the model
would not capture the entire bursty period before the re-
cency weight dropped significantly. In essence, the model
ignored most of the history except for the most recent four
days. As a result, as shown in Figure 6, most of the files
have relatively small values when � � �. When we in-
creased � to 12 or 16 days, each lifestage covered much of

the bursty periods, and hence the model can differentiate
files with much more clarity.

Clearly for file sets with a large fraction of bursty files,
we must select sufficiently long lifestage to cover the bursty
file usage changes. Although the length of lifestage affect
the model effectiveness, as long as � is within reasonable
range (� and �� in our case study), the model is reasonably
robust to the lifestage length changes.
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Figure 5. The effect of lifestage variation on
file value changes for EECS.

Scaling factor sensitivity Different values for scaling
factor �� may affect the ability for our model to differen-
tiate files by values. We validate such effects by varying
�� from 10 to 500. �� are selected based on the file access
count ranges from the traces. Figure 7 showed the results
for EECS. Others are similar. As we increased �� more
files fall into lower value classes. The average file values de-
creased significantly across all three traces. For EECS, only
about 400 files had file values larger than 5 when �� � ���,
although those files still captured a large fraction of the to-
tal file accesses. Most of the remaining files fall into small
value class ��� �	 as indicated by the graph. Clearly, the
distinction between the high value classes and others will
diminish if we continue to increase �� . Note also that the
reference files on these file server typically do not have a
large number of accesses. Most of the files have only spo-
radic accesses from time to time. This is why significantly
high value for �� will weaken the ability for the model to
differentiate files.

In summary, our real world case study showed that the
model is able to capture the key trends in information val-
ues. By examining the model outputs and extracting unique
file attribute sets for high value classes, users can gain inter-
esting insights. Our model sensitivity study showed that the
model is robust as long as the parameter values fall within
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Value changes according to the length of
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Figure 6. The effect of lifestage variation on
file value changes for CAMPUS.
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Figure 7. The effect of scaling factor variation
on file value changes for EECS.

reasonable range.

5. Discussion

The baseline model for storage systems has limitations
and can be improved. We discuss them below.

Incorporating future knowledge The baseline UT
model uses the past usage patterns to predict the information
value for the future. If users have relatively clear knowl-
edge about the data usage for some future time, such knowl-
edge can be incorporated through high level user guidance.
Incorporating such expected usage can improve the model
prediction. Such an extension can be done by lengthening
the valuation period to include some future time and the ex-
pected usage in that time frame into our model. We assign

lower weights for the future lifestages since future always
holds uncertainty, similar to assigning weights to the past.
In general, the weight distribution should be bimodal with
the highest weight assigned to the present lifestage.

Incorporating high level application and user knowledge
Our baseline model only considered the information col-
lected by storage. ILM solutions typically consists of a
stack of system components, e.g., storage systems, middle-
ware, and other high level applications. Such applications
often have additional knowledge about how information are
used outside of storage. Similarly, users may provide their
high level guidance with appropriate API support. For in-
stance, content management systems have knowledge on
how documents are linked with business workflow pro-
cesses, such as analyst reporting, insurance claims, etc. By
working with such middle-ware and/or high level applica-
tions, additional business knowledge can be collected and
used for valuation, classification, and optimizations. For in-
stance, the business workflow event of report rejection may
provide implications on the value of the report.

Incorporating cost factors Our model can easily incor-
porate the cost of information production, reproduction,
and acquisition as shown below. Such cost factors become
important when we consider the risks of data loss. With
all other usage factors being equal, easily reproducible in-
formation may be deemed as less valuable than hard-to-
produce information. Here, ���� is the normalized cost
factor for information �.

����� � ���� � �

���

���

����� � ���������� � ��� 	�
 (4)

6. Conclusions and future work

In this paper, we presented an information valuation
model that makes use of the storage system collected in-
formation usage statistics and measurable metrics to derive
information value for a given piece of information at a given
time. The model combines the recency and degree of us-
age aspects into a single function without biasing one or
another, and hence it can be used in diverse environments.
The overall model satisfies the key modeling requirements:
it requires little or no human intervention; it relies on tan-
gible and measurable metrics; it is simple, robust, and eas-
ily comprehensible as our case study with three file servers
from Harvard University has shown. Our validation results
also confirmed that the model is able to capture key trends
in the data sets as well as reflect the changing information
value and file value differences. Furthermore, when cou-
pled with attribution algorithms, the overall valuation and
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attribute process provide interesting insights. Finally, the
model is adaptive to changing environments as it uses adap-
tive parameters, such as usage over time.

Information valuation is only the first step towards the
long term goal of ILM automation. To fully automate all
ILM tasks, technologies in valuation, data characterization
and classification, and optimizations must be developed.
All such technologies also need to be integrated coherently
across system stack as fully automated ILM solutions. In
the future, we plan to continue our work in those directions.
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