Electromagnetic waves

This is an appropriate point at which to demonstrate that Maxwell's equations possess propagating wave-like solutions. Let us start from Maxwell's equations in free space (i.e., with no
charges and no currents):

V-E = 0, (430)
v-B = 0, 31
B
VxE = o) (432)
oE
VxB = €nfip B (433)

Note that these equations exhibit a nice symmetry between the electric and magnetic fields.

There is an casy way to show that the above equations possess wave-like solutions, and a hard way. The easy way is to assume that the solutions are going to be wave-like beforehand.
Specifically. let us search for plane-wave solutions of the form:

E(r,t) =  Eyeos(k-r—wt), (#34)

B(r,t) = Bocos(k r—wt+9). (435)

Here, Eg and By are constant vectors, k is called the wave-vector, and w 1s the angular frequency. The frequency in hertz, f. is related to the angular frequency via w = 27 f. The

frequency is conventionally defined to be positive. The quantity ¢ is a phase difference between the electric and magnetic fields. Actually. it is more convenient to write
— i(kr-wt
E = Eqet®re), (436)

B — Buei(lu-—mi)7 @7

where, by convention, the physical solution is the real parr of the above equations. The phase difference @ is absorbed into the constant vector By by allowing it to become complex.

Thus, By — Bge®. In general, the vector Eq is also complex
A wave maximum of the electric field satisfies

k-r=wt+n2r+ ¢, (438)

where 7 is an integer and ¢ is some phase angle. The solution to this equation is a set of equally spaced parallel planes (one plane for each possible value of 1), whose normals lie in

the direction of the wave-vector k. and which propagate in this direction with phase-velocity

The spacing between adjacent planes (i.e., the wave-length) is given by

A= 2E (@40

(see Fig. 35).
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Figure 35:

Consider a general plane-wave vector field

A= Auex(k-r—wt)_ (441)



‘What is the divergence of A ? This is easy to evaluate. We have

VoA = 2 O DA i+ gk, + Agik,) e
gz By Oz

= ik-A. )

How about the curl of A ? This is slightly more difficult. We have
04, 04,

(VxA), = I TE—(hA-ika)

ik xA),. (443)

This is easily generalized to

VxA=1ik x A. (444)

We can see that vector field operations on a plane-wave simplify to replacing the V operator with k.
The first Maxwell equation (430) reduces to
ik-Epy=0, (44%)

using the assumed electric and magnetic fields (436) and (437). and Eq. (442). Thus, the electric field is perpendicular to the direction of propagation of the wave. Likewise, the second
Maxwell equation gives

ik-Bg =0, (446)

implying that the magnetic field is also perpendicular to the direction of propagation. Clearly, the wave-like solutions of Maxwell's equation are a type of nransverse wave. The thud
Maxwell equation gives

ik x By = iw By, @47 |:

where use has been made of Eq. (444). Dotting this equation with Fy yields

E;-By = E“i']:x L) (48)

Thus, the electric and magnetic fields are mutually perpendicular. Dotting equation (447) with By yields

By kxEy=wB;’ > 0. (449)

Thus, the vectors Eg, Bg. and k are mutually perpendicular. and form a right-handed set. The final Maxwell equation gives

ik x By = —ieguow Ey. (450)

Can you show how you derive (450) step by step from the maxwell equation that they use. Please
use vector notation in the derivation.



