the extrema subject to two constraints is on page 11 in the link above

5 Extrema subject to two constraints

Here is Theorem 1 with m = 2.

Theorem 3 Suppose that n > 2. If X_0 is a local extreme point of f subject to $g_1(X) = g_2(X) = 0$ and

$$\frac{\frac{\partial g_1(\mathbf{X}_0)}{\partial x_r}}{\frac{\partial g_2(\mathbf{X}_0)}{\partial x_s}} \stackrel{\partial g_1(\mathbf{X}_0)}{\frac{\partial g_2(\mathbf{X}_0)}{\partial x_r}} \neq 0$$
(19)

for some r and s in $\{1, 2, ..., n\}$, then there are constants λ and μ such that

$$\frac{\partial f(\mathbf{X}_0)}{\partial x_i} - \lambda \frac{\partial g_1(\mathbf{X}_0)}{\partial x_i} - \mu \frac{\partial g_2(\mathbf{X}_0)}{\partial x_i} = 0,$$
(20)

 $1 \leq i \leq n$.

Proof For notational convenience, let r = 1 and s = 2. Denote

 $U = (x_3, x_4, \dots x_n)$ and $U_0 = (x_{30}, x_{30}, \dots x_{n0})$.

Since

$$\frac{\frac{\partial g_1(\mathbf{X}_0)}{\partial x_1}}{\frac{\partial g_2(\mathbf{X}_0)}{\partial x_1}} = \frac{\frac{\partial g_2(\mathbf{X}_0)}{\partial x_2}}{\frac{\partial g_2(\mathbf{X}_0)}{\partial x_1}} \neq 0, \qquad (21)$$

the Implicit Function Theorem (Theorem 6.4.1, p. 420) implies that there are unique continuously differentiable functions

$$h_1 = h_1(x_3, x_4, \dots, x_n)$$
 and $h_2 = h_1(x_3, x_4, \dots, x_n)$,
defined on a neighborhood $N \subset \mathbb{R}^{n-2}$ of U₀, such that $(h_1(U), h_2(U), U) \in D$ for all
 $U \in N, h_1(U_0) = x_{10}, h_2(U_0) = x_{20}$, and

I don't get how they can take the derivative of g_1 and g_2 with respect to x_1 and x_2 when they are defined as

$$h_1 = h_1(x_3, x_4, \dots, x_n) = x_1$$
 and $h_2 = h_2(x_3, x_4, \dots, x_n) = x_2$

I need a mathematical justification for how this can be written simply as (21) when x_1 and x_2 are defined as functions from other variables: $x_3, x_4, ..., x_n$

Is it by using the chain rule or something else? Please og through the detailed steps for how this can be a normal quadratic matrix as defined in the implicit function theorem and by that showing why this is an appliable form of the implicit function theorem nonsingular matrix in (21): The function G has image in \mathbb{R}^2 , so we call the two components h_1 and h_2 , that is, $G(Y) = (h_1(Y), h_2(Y))$ where $h_1, h_2 : \mathbb{R}^{n-2} \to \mathbb{R}$. For us $Y = (x_3, \ldots, x_n)$, therefore both functions h_1 and h_2 depend on (x_3, \ldots, x_n) and we write that by saying $h_1 = h_1(x_3, \ldots, x_n)$ and $h_2 = h_2(x_3, \ldots, x_n)$ (there is a typo there in the book, certainly it is not necessarily true that $h_2 = h_1$). The two functions h_1, h_2 are defined on the neighborhood N of Y_0 in \mathbb{R}^{n-2} . Now, from (3), for all $\mathbf{Y} \in N$, $(G(\mathbf{Y}), \mathbf{Y}) = (h_1(\mathbf{Y}), h_2(\mathbf{Y}), \mathbf{Y}) \in M$. As $M \subseteq D$ we have $(h_1(\mathbf{Y}), h_2(\mathbf{Y}), \mathbf{Y}) \in D$.

Theorem 6.4.1 (The Implicit Function Theorem) Suppose that $F : \mathbb{R}^{n+m} \to \mathbb{R}^m$ is continuously differentiable on an open set S of \mathbb{R}^{n+m} containing (X_0, U_0) . Let $F(X_0, U_0) = 0$, and suppose that $F_U(X_0, U_0)$ is nonsingular. Then there is a neighborhood M of (X_0, U_0) , contained in S, on which $F_U(X, U)$ is nonsingular and a neighborhood N of X_0 in \mathbb{R}^n on which a unique continuously differentiable transformation $G : \mathbb{R}^n \to \mathbb{R}^m$ is defined, such that $G(X_0) = U_0$ and

Search for the theorem in this link if you want to see more from the implicit function theorem. It is on page 420

http://ramanujan.math.trinity.edu/wtrench/texts/TRENCH_REAL_ANALYSIS.PDF