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I need to prove that 
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Has the shape of 
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Can you show first how the determinant of 
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Is. I have a problem since it is the derivative with respecot of U. And afterwards show why (21) is the same as this?
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Search for the theorem in this link if you want to see more from the implicit function theorem. It is on page 420
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5 Extrema subject to two constraints

Here is Theorem | with m

Theorem 3 Suppose that n > 2.1f Xo is a local extreme pointof f subject 10 g1(X) =
8(X) =0and
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Jor some r and s in {1.2.....n}. then there are constants A and . such that
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Proof  For notational convenience, let r = 1 and s = 2. Denote
U= (x3.x4....x) and Up = (x30.X30.- . Xn0)-

Since
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the Implicit Function Theorem (Theorem 6.4.1, p. 420) implies that there arc unique
continuously differentiable functions
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X)) and hy = h1(X3. X4, ).

defined on a neighborhood N © R"~2 of Up, such that (k1 (U), ha(U), U) € D for all
Ue N.hi(Uo) = x10. h2(Up) = x20, and

g1(h1 (V). h2(U). U) = ga(h1 (U). h2(U).U) =0. UeN. @)

hy =hi(x3, x4,
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Theorem 6.4.1 (The Implicit Function Theorem) Supposerhar F : R**" —
iy coninuuty difereniabl on an epen 65 of B correig (RO Tor—
U et F o s ey, Thon hre s eiiriond

"M of Xo. Uo). coniained in S. on which FU(X, U) is nonsingular and a neighborhood N

of Xo in " on which a unique continuously differentiable transformation G : R" — R™

is defined, such that G(Xo) Uy and

(X.GX) eM and FX.GX)=0 if XeN. ©46)

Moreover,

G(X) = —[FuX.GX) ' Fx (X, G(X)). XeN. 647)




