the extrema subject to two constraints is on page 11 in the link above

5 Extrema subject to two constraints

Here is Theorem 1 with m = 2.

Theorem 3 Suppose that n > 2. If X_0 is a local extreme point of f subject to $g_1(X) = g_2(X) = 0$ and

$$\frac{\frac{\partial g_1(\mathbf{X}_0)}{\partial x_r}}{\frac{\partial g_2(\mathbf{X}_0)}{\partial x_s}} \stackrel{\partial g_2(\mathbf{X}_0)}{\frac{\partial g_2(\mathbf{X}_0)}{\partial x_r}} \neq 0$$
(19)

for some r and s in $\{1, 2, ..., n\}$, then there are constants λ and μ such that

$$\frac{\partial f(\mathbf{X}_0)}{\partial x_i} - \lambda \frac{\partial g_1(\mathbf{X}_0)}{\partial x_i} - \mu \frac{\partial g_2(\mathbf{X}_0)}{\partial x_i} = 0,$$
(20)

 $1 \leq i \leq n$.

Proof For notational convenience, let r = 1 and s = 2. Denote

 $U = (x_3, x_4, \dots, x_n)$ and $U_0 = (x_{30}, x_{30}, \dots, x_{n0})$.

Since

$$\frac{\frac{\partial g_1(\mathbf{X}_0)}{\partial x_1}}{\frac{\partial g_2(\mathbf{X}_0)}{\partial x_2}} \begin{vmatrix} \frac{\partial g_1(\mathbf{X}_0)}{\partial x_2} \\ \frac{\partial g_2(\mathbf{X}_0)}{\partial x_1} & \frac{\partial g_2(\mathbf{X}_0)}{\partial x_2} \end{vmatrix} \neq 0,$$
(21)

the Implicit Function Theorem (Theorem 6.4.1, p. 420) implies that there are unique continuously differentiable functions

$$\frac{h_1 = h_1(x_3, x_4, \dots, x_n) \text{ and } h_2 = h_1(x_3, x_4, \dots, x_n),}{\text{defined on a neighborhood } N \subset \mathbb{R}^{n-2} \text{ of } U_0, \text{ such that } (h_1(U), h_2(U), U) \in D \text{ for all}}$$

Can you point where all the mathematical notation underlined with violet above is in the implicit function since they use that proof. That is show where $h_1 h_2$, **U**, x_{10} , x_{20} , N and \mathbb{R}^{n-2} is in the general formulation of the implicit function theorem And why have they defined $h_2=h_1$?:

Theorem 6.4.1 (The Implicit Function Theorem) Suppose that $F : \mathbb{R}^{n+m} \to \mathbb{R}^m$ is continuously differentiable on an open set S of \mathbb{R}^{n+m} containing (X_0, U_0) . Let $F(X_0, U_0) = 0$, and suppose that $F_U(X_0, U_0)$ is nonsingular. Then there is a neighborhood M of (X_0, U_0) , contained in S, on which $F_U(X, U)$ is nonsingular and a neighborhood N of X_0 in \mathbb{R}^n on which a unique continuously differentiable transformation $G : \mathbb{R}^n \to \mathbb{R}^m$ is defined, such that $G(X_0) = U_0$ and

$$(\mathbf{X}, \mathbf{G}(\mathbf{X})) \in M$$
 and $\mathbf{F}(\mathbf{X}, \mathbf{G}(\mathbf{X})) = 0$ if $\mathbf{X} \in N$. (6.4.6)

Moreover,

$$G'(X) = -[F_U(X, G(X))]^{-1}F_X(X, G(X)), X \in N.$$
 (6.4.7)

Search for the theorem in this link if you want to see more from the implicit function theorem. It is on page 420

http://ramanujan.math.trinity.edu/wtrench/texts/TRENCH_REAL_ANALYSIS.PDF