Week 6 Part 2 Chapter 16

#1. The Aluminum Can Company has 200,000 obsolete cans in inventory at a cost of \$10,000. The cans can be cut in half to make candle holders for \$2,000. The candle holders can be sold for \$3,500 in total. If the cans are scrapped, they could be sold for \$900.

Which alternative should the Aluminum Can Company accept and what is the relevant profit from the alternative?

#2. Cari manufactures a unit called Y2. Variable manufacturing costs per unit of Y2 are as follows:

Direct materials	\$2
Direct labor	\$20
Variable manufacturing overhead	\$10

The Nick Company has offered to sell Cari 10,000 units of Y2 for \$44 per unit. If Cari accepts the offer, \$140,000 of fixed manufacturing overhead will be eliminated.

Applying differential analysis to the situation, what should Cari do?

#3. Northern Production Company has 200 labor-hours available. There is no limit on machine-hours. Northern can sell all of Y it wants, but it can only sell 45 units and 20 units of X and Z, respectively.

	Product X	Product Y	Product Z
Contribution margin per unit	\$30	. \$20	\$24
Labor-hours per unit	4	5	4
Machine-hours per unit	10	8	2

What is the contribution margin per labor-hour for product Y?

#4. The Kirsten Company uses a joint process to produce products A, B, C, and D. Each product may be sold at its split-off point or processed further. Joint processing costs for a single batch of joint products are \$65,000. Other relevant data are as follows:

	<u>Sales Value</u>	Additional Costs	Sales Value
<u>Product</u>	At Split-Off	of Processing	of Final Product
Α	\$15,000	\$18,000	\$ 45,000
В	27,000	15,000	40,000
C	20,000	25,000	30,000
D	<u>13,000</u>	<u>11,000</u>	25,000
	\$75,000	\$69,000	\$140,000

Calculate the effect on profits of processing Product A further beyond the split-off point.

#5. A limitation of 3,000 machine-hours per week prevents Manhattan Manufacturing Company from meeting the sales demands for its products. The product information is as follows:

	<u>R1</u>	<u>R2</u>	<u>R3</u>	<u>R4</u>
Unit selling price	\$900	\$600	\$350	\$600
Unit variable costs	<u>- 600</u>	<u>- 250</u>	<u>- 200</u>	<u>- 300</u>
Unit contribution margin	\$300	\$350	\$150	\$300
Machine-hours per unit	20	20	20	30

Assuming unlimited demand for each product, determine what is the best short-run profit maximizing strategy?