The equation (334) is taken from the bottom here

http://farside.ph.utexas.edu/teaching/em/lectures/node38.html

The equation (337) is taken from the top here
http://farside.ph.utexas.edu/teaching/em/lectures/node39.html

These solutions can be recombined to form a single vector solution

$$
\mathbf{A}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \int \frac{\mathbf{j}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d^{3} \mathbf{r}^{\prime}
$$

The Biot-Savart law

According to Eq. (316), we can obtain an expression for the electric field generated by stationary charges by taking minus the gradient of Eq. (335). This yields

$$
\mathbf{E}(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \int \rho\left(\mathbf{r}^{\prime}\right) \frac{\mathbf{r}-\mathbf{r}^{\prime}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{3}} d^{3} \mathbf{r}^{\prime}
$$

which we recognize as Coulomb's law written for a continuous charge distribution. According to Eq. (318), we can obtain an equivalent expression for the magnetic field generated by steady currents by taking the curl of Eq. (334). This gives

$$
\begin{equation*}
\mathbf{B}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \int \frac{\mathbf{j}\left(\mathbf{r}^{\prime}\right) \times\left(\mathbf{r}-\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{3}} d^{3} \mathbf{r}^{\prime} \tag{337}
\end{equation*}
$$

where use has been made of the vector identity $\nabla \times(\phi \mathbf{A})=\phi \nabla \times \mathbf{A}+\nabla \phi \times \mathbf{A}$. Equation (337) is known as the Biot-Savart law after the French physicists Jean Baptiste Biot and Felix Savart: it completely specifies the magnetic field generated by a steady (but otherwise quite general) distributed current.

$$
\begin{aligned}
& \nabla \times A=\frac{\mu_{0}}{4 \pi} \int \nabla \times \frac{\boldsymbol{j}\left(\boldsymbol{r}^{\prime}\right)}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|} d^{3} \boldsymbol{r}^{\prime} \\
& =\frac{\mu_{0}}{4 \pi} \int \nabla \times \frac{\boldsymbol{j}\left(\boldsymbol{r}^{\prime}\right)}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|} d^{3} \boldsymbol{r}^{\prime} \\
& \begin{array}{cc}
i & j \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\
\frac{\boldsymbol{j}\left(\boldsymbol{r}^{\prime}\right)}{\left|\boldsymbol{r}_{x}-\boldsymbol{r}^{\prime}\right|} & \frac{\partial}{\partial z} \\
\left|\boldsymbol{r}_{\boldsymbol{y}}-\boldsymbol{r}^{\prime}\right| & \left.\frac{\boldsymbol{j}\left(\boldsymbol{r}^{\prime}\right)}{\left|\boldsymbol{r}_{z}-\boldsymbol{r}^{\prime}\right|} \right\rvert\, \\
\binom{\left.\frac{\partial}{\partial y} \frac{\boldsymbol{j}\left(\boldsymbol{r}^{\prime}\right)}{\left|\boldsymbol{r}_{\boldsymbol{z}}-\boldsymbol{r}^{\prime}\right|}-\frac{\partial}{\partial z} \frac{\boldsymbol{j}\left(\boldsymbol{r}^{\prime}\right)}{\left|\boldsymbol{r}_{\boldsymbol{y}}-\boldsymbol{r}^{\prime}\right|}\right) i}{-\left(\frac{\partial}{\partial x} \frac{\boldsymbol{j}\left(\boldsymbol{r}^{\prime}\right)}{\left|\boldsymbol{r}_{z}-\boldsymbol{r}^{\prime}\right|}-\frac{\partial}{\partial z} \frac{\boldsymbol{j}\left(\boldsymbol{r}^{\prime}\right)}{\left|\boldsymbol{r}_{x}-\boldsymbol{r}^{\prime}\right|}\right)} j \\
+\left(\frac{\partial}{\partial x} \frac{\boldsymbol{j}\left(\boldsymbol{r}^{\prime}\right)}{\left|\boldsymbol{r}_{\boldsymbol{y}}-\boldsymbol{r}^{\prime}\right|}-\frac{\partial}{\partial y} \frac{\boldsymbol{j}\left(\boldsymbol{r}^{\prime}\right)}{\left|\boldsymbol{r}_{x}-\boldsymbol{r}^{\prime}\right|}\right) k
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \left(j\left(r^{\prime}\right) \frac{\partial}{\partial y} \frac{1}{\left|r_{z}-r^{\prime}\right|}+\frac{1}{\left|\boldsymbol{r}_{z}-\boldsymbol{r}^{\prime}\right|} \frac{\partial}{\partial y} \boldsymbol{j}\left(\boldsymbol{r}^{\prime}\right)-j\left(\boldsymbol{r}^{\prime}\right) \frac{\partial}{\partial z} \frac{1}{\left|\boldsymbol{r}_{y}-\boldsymbol{r}^{\prime}\right|}-\frac{1}{\left|\boldsymbol{r}_{\boldsymbol{y}}-\boldsymbol{r}^{\prime}\right|} \frac{\partial}{\partial z} \boldsymbol{j}\left(\boldsymbol{r}^{\prime}\right)\right) i \\
& -\left(j\left(\boldsymbol{r}^{\prime}\right) \frac{\partial}{\partial x} \frac{1}{\left|\boldsymbol{r}_{z}-\boldsymbol{r}^{\prime}\right|}+\frac{1}{\left|\boldsymbol{r}_{z}-\boldsymbol{r}^{\prime}\right|} \frac{\partial}{\partial x} \boldsymbol{j}\left(\boldsymbol{r}^{\prime}\right)-\boldsymbol{j}\left(\boldsymbol{r}^{\prime}\right) \frac{\partial}{\partial z} \frac{1}{\left|\boldsymbol{r}_{x}-\boldsymbol{r}^{\prime}\right|}-\frac{1}{\left|\boldsymbol{r}_{\boldsymbol{x}}-\boldsymbol{r}^{\prime}\right|} \frac{\partial}{\partial z} \boldsymbol{j}\left(\boldsymbol{r}^{\prime}\right)\right) j \\
& \left(j\left(r^{\prime}\right) \frac{\partial}{\partial x} \frac{1}{\left|r_{y}-\boldsymbol{r}^{\prime}\right|}+\frac{1}{\left|\boldsymbol{r}_{\boldsymbol{y}}-\boldsymbol{r}^{\prime}\right|} \frac{\partial}{\partial x} \boldsymbol{j}\left(\boldsymbol{r}^{\prime}\right)-\boldsymbol{j}\left(\boldsymbol{r}^{\prime}\right) \frac{\partial}{\partial y} \frac{1}{\left|\boldsymbol{r}_{x}-\boldsymbol{r}^{\prime}\right|}-\frac{1}{\left|\boldsymbol{r}_{\boldsymbol{x}}-\boldsymbol{r}^{\prime}\right|} \frac{\partial}{\partial y} \boldsymbol{j}\left(\boldsymbol{r}^{\prime}\right)\right) k \\
& \left(j\left(\boldsymbol{r}^{\prime}\right) \frac{\partial}{\partial y} \frac{1}{\left|r_{z}-r^{\prime}\right|}-\boldsymbol{j}\left(\boldsymbol{r}^{\prime}\right) \frac{\partial}{\partial z} \frac{1}{\left|r_{y}-r^{\prime}\right|}+\frac{1}{\left|\boldsymbol{r}_{\boldsymbol{z}}-\boldsymbol{r}^{\prime}\right|} \frac{\partial}{\partial y} \boldsymbol{j}\left(\boldsymbol{r}^{\prime}\right)-\frac{1}{\left|\boldsymbol{r}_{\boldsymbol{y}}-\boldsymbol{r}^{\prime}\right|} \frac{\partial}{\partial z} \boldsymbol{j}\left(\boldsymbol{r}^{\prime}\right)\right) i \\
& -\left(j\left(\boldsymbol{r}^{\prime}\right) \frac{\partial}{\partial x} \frac{1}{\left|r_{z}-\boldsymbol{r}^{\prime}\right|}-\boldsymbol{j}\left(\boldsymbol{r}^{\prime}\right) \frac{\partial}{\partial z} \frac{1}{\left|\boldsymbol{r}_{x}-\boldsymbol{r}^{\prime}\right|}+\frac{1}{\left|\boldsymbol{r}_{z}-\boldsymbol{r}^{\prime}\right|} \frac{\partial}{\partial x} \boldsymbol{j}\left(\boldsymbol{r}^{\prime}\right)-\frac{1}{\left|\boldsymbol{r}_{\boldsymbol{x}}-\boldsymbol{r}^{\prime}\right|} \frac{\partial}{\partial z} \boldsymbol{j}\left(\boldsymbol{r}^{\prime}\right)\right) \boldsymbol{j} \\
& \left(j\left(\boldsymbol{r}^{\prime}\right) \frac{\partial}{\partial x} \frac{1}{\left|\boldsymbol{r}_{y}-\boldsymbol{r}^{\prime}\right|}-\boldsymbol{j}\left(\boldsymbol{r}^{\prime}\right) \frac{\partial}{\partial y} \frac{1}{\left|r_{x}-\boldsymbol{r}^{\prime}\right|}+\frac{1}{\left|\boldsymbol{r}_{\boldsymbol{y}}-\boldsymbol{r}^{\prime}\right|} \frac{\partial}{\partial x} \boldsymbol{j}\left(\boldsymbol{r}^{\prime}\right)-\frac{1}{\left|\boldsymbol{r}_{\boldsymbol{x}}-\boldsymbol{r}^{\prime}\right|} \frac{\partial}{\partial y} \boldsymbol{j}\left(\boldsymbol{r}^{\prime}\right)\right) k \\
& \left(j\left(r^{\prime}\right) \frac{\partial}{\partial y} \frac{1}{\left|r_{z}-r^{\prime}\right|}-j\left(r^{\prime}\right) \frac{\partial}{\partial z} \frac{1}{\left|r_{y}-r^{\prime}\right|}\right) i \\
& +\left(\frac{1}{\left|\boldsymbol{r}_{z}-\boldsymbol{r}^{\prime}\right|} \frac{\partial}{\partial y} \boldsymbol{j}\left(\boldsymbol{r}^{\prime}\right)-\frac{1}{\left|\boldsymbol{r}_{\boldsymbol{y}}-\boldsymbol{r}^{\prime}\right|} \frac{\partial}{\partial z} \boldsymbol{j}\left(\boldsymbol{r}^{\prime}\right)\right) i \\
& -\left(j\left(r^{\prime}\right) \frac{\partial}{\partial x} \frac{1}{\left|r_{z}-r^{\prime}\right|}-j\left(r^{\prime}\right) \frac{\partial}{\partial z} \frac{1}{\left|r_{x}-r^{\prime}\right|}\right) j \\
& -\left(\frac{1}{\left|\boldsymbol{r}_{z}-\boldsymbol{r}^{\prime}\right|} \frac{\partial}{\partial x} \boldsymbol{j}\left(\boldsymbol{r}^{\prime}\right)-\frac{1}{\left|\boldsymbol{r}_{x}-\boldsymbol{r}^{\prime}\right|} \frac{\partial}{\partial z} \boldsymbol{j}\left(\boldsymbol{r}^{\prime}\right)\right) j \\
& \left(j\left(r^{\prime}\right) \frac{\partial}{\partial x} \frac{1}{\left|r_{y}-r^{\prime}\right|}-j\left(r^{\prime}\right) \frac{\partial}{\partial y} \frac{1}{\left|r_{x}-r^{\prime}\right|}\right) k \\
& \left(\frac{1}{\left|\boldsymbol{r}_{\boldsymbol{y}}-\boldsymbol{r}^{\prime}\right|} \frac{\partial}{\partial x} \boldsymbol{j}\left(\boldsymbol{r}^{\prime}\right)-\frac{1}{\left|\boldsymbol{r}_{x}-\boldsymbol{r}^{\prime}\right|} \frac{\partial}{\partial y} \boldsymbol{j}\left(\boldsymbol{r}^{\prime}\right)\right) k \\
& j\left(\boldsymbol{r}^{\prime}\right)\left(\frac{\partial}{\partial y} \frac{1}{\left|r_{z}-r^{\prime}\right|}-\frac{\partial}{\partial z} \frac{1}{\left|r_{y}-r^{\prime}\right|}\right) i \\
& +\left(\frac{1}{\left|\boldsymbol{r}_{z}-\boldsymbol{r}^{\prime}\right|} \frac{\partial}{\partial y} \boldsymbol{j}\left(\boldsymbol{r}^{\prime}\right)-\frac{1}{\left|\boldsymbol{r}_{\boldsymbol{y}}-\boldsymbol{r}^{\prime}\right|} \frac{\partial}{\partial z} \boldsymbol{j}\left(\boldsymbol{r}^{\prime}\right)\right) i
\end{aligned}
$$

$$
\begin{aligned}
& -j\left(r^{\prime}\right)\left(\frac{\partial}{\partial x} \frac{1}{\left|r_{z}-r^{\prime}\right|}-\frac{\partial}{\partial z} \frac{1}{\left|r_{x}-r^{\prime}\right|}\right) j \\
& -\left(\frac{1}{\left|\boldsymbol{r}_{z}-\boldsymbol{r}^{\prime}\right|} \frac{\partial}{\partial x} \boldsymbol{j}\left(\boldsymbol{r}^{\prime}\right)-\frac{1}{\left|\boldsymbol{r}_{x}-\boldsymbol{r}^{\prime}\right|} \frac{\partial}{\partial z} \boldsymbol{j}\left(\boldsymbol{r}^{\prime}\right)\right) j \\
& +j\left(r^{\prime}\right)\left(\frac{\partial}{\partial x} \frac{1}{\left|r_{y}-r^{\prime}\right|}-\frac{\partial}{\partial y} \frac{1}{\left|r_{x}-r^{\prime}\right|}\right) k \\
& \left(\frac{1}{\left|\boldsymbol{r}_{\boldsymbol{y}}-\boldsymbol{r}^{\prime}\right|} \frac{\partial}{\partial x} \boldsymbol{j}\left(\boldsymbol{r}^{\prime}\right)-\frac{1}{\left|\boldsymbol{r}_{\boldsymbol{x}}-\boldsymbol{r}^{\prime}\right|} \frac{\partial}{\partial y} \boldsymbol{j}\left(\boldsymbol{r}^{\prime}\right)\right) k \\
& j\left(r^{\prime}\right)\left(\left(\frac{\partial}{\partial y} \frac{1}{\left|r_{z}-r^{\prime}\right|}-\frac{\partial}{\partial z} \frac{1}{\left|r_{y}-r^{\prime}\right|}\right) i-\left(\frac{\partial}{\partial x} \frac{1}{\left|r_{z}-r^{\prime}\right|}-\frac{\partial}{\partial z} \frac{1}{\left|r_{x}-r^{\prime}\right|}\right) j+\left(\frac{\partial}{\partial x} \frac{1}{\left|r_{y}-r^{\prime}\right|}-\frac{\partial}{\partial y} \frac{1}{\left|r_{x}-r^{\prime}\right|}\right) k\right) \\
& +\left(\frac{1}{\left|\boldsymbol{r}_{z}-\boldsymbol{r}^{\prime}\right|} \frac{\partial}{\partial y} \boldsymbol{j}\left(\boldsymbol{r}^{\prime}\right)-\frac{1}{\left|\boldsymbol{r}_{\boldsymbol{y}}-\boldsymbol{r}^{\prime}\right|} \frac{\partial}{\partial z} \boldsymbol{j}\left(\boldsymbol{r}^{\prime}\right)\right) i \\
& -\left(\frac{1}{\left|\boldsymbol{r}_{z}-\boldsymbol{r}^{\prime}\right|} \frac{\partial}{\partial x} \boldsymbol{j}\left(\boldsymbol{r}^{\prime}\right)-\frac{1}{\left|\boldsymbol{r}_{x}-\boldsymbol{r}^{\prime}\right|} \frac{\partial}{\partial z} \boldsymbol{j}\left(\boldsymbol{r}^{\prime}\right)\right) j \\
& \left(\frac{1}{\left|\boldsymbol{r}_{\boldsymbol{y}}-\boldsymbol{r}^{\prime}\right|} \frac{\partial}{\partial x} \boldsymbol{j}\left(\boldsymbol{r}^{\prime}\right)-\frac{1}{\left|\boldsymbol{r}_{x}-\boldsymbol{r}^{\prime}\right|} \frac{\partial}{\partial y} \boldsymbol{j}\left(\boldsymbol{r}^{\prime}\right)\right) k \\
& j\left(r^{\prime}\right)\left(\nabla x \frac{1}{\left|r-r^{\prime}\right|}\right)+ \\
& \nabla \boldsymbol{j}\left(\boldsymbol{r}^{\prime}\right) \times \frac{1}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|}
\end{aligned}
$$

I can't get the magnetic equation (337) from (334). I need a mathematical calculation from (334) to (337). In order for me to get this I need to have every step of the calculation done. And answer with pc signs if not I will not either get anything.
(8) Prove $\nabla \mathrm{x}(\phi \mathbf{A})=(\nabla \phi) \mathrm{xA}+\phi(\nabla \mathrm{xA})$

$$
\begin{aligned}
\nabla x\left(\phi A_{)}\right. & =\left|\begin{array}{ccc}
i & j & k \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\phi A_{1} & \phi A_{2} & \phi A_{3}
\end{array}\right| \\
& =\left(\frac{\partial\left(\phi A_{3}\right)}{\partial y}-\frac{\partial\left(\phi A_{2}\right)}{\partial z}\right) i-\left(\frac{\partial\left(\phi A_{3}\right)}{\partial x}-\frac{\partial\left(\phi A_{1}\right)}{\partial z}\right) j+\left(\frac{\partial\left(\phi A_{2}\right)}{\partial x}-\frac{\partial\left(\phi A_{1}\right)}{\partial y}\right) k \\
& =\left(\phi \frac{\partial A_{3}}{\partial y}+\Lambda_{3} \frac{\partial \phi}{\partial y}-\phi \frac{\partial A_{2}}{\partial y}-\Lambda_{2} \frac{\partial \phi}{\partial y}\right) i-\left(\phi \frac{\partial A_{3}}{\partial x}+\Lambda_{3} \frac{\partial \phi}{\partial x}-\phi \frac{\partial A_{1}}{\partial z}-\Lambda_{1} \frac{\partial \phi}{\partial z}\right) j+\left(\phi \frac{\partial A_{2}}{\partial x}+\Lambda_{2} \frac{\partial \phi}{\partial x}-\phi \frac{\partial A_{1}}{\partial y}-\Lambda_{1} \frac{\partial \phi}{\partial y}\right) k \\
& =\left[\left(\Lambda_{3} \frac{\partial \phi}{\partial y}-A_{2} \frac{\partial \phi}{\partial y}\right) i-\left(\Lambda_{3} \frac{\partial \phi}{\partial x}-A_{1} \frac{\partial \phi}{\partial z}\right) j+\left(\Lambda_{2} \frac{\partial \phi}{\partial x}-\Lambda_{1} \frac{\partial \phi}{\partial y}\right) k\right]
\end{aligned}
$$

$$
\begin{array}{ll}
& +\left[\left(\phi \frac{\partial A_{3}}{\partial y}-\phi \frac{\partial A_{2}}{\partial y}\right) i-\left(\phi \frac{\partial A_{3}}{\partial x}-\phi \frac{\partial A_{1}}{\partial z}\right) j+\left(\phi \frac{\partial A_{2}}{\partial x}-\phi \frac{\partial A_{1}}{\partial y}\right) k\right] \\
= & \left|\begin{array}{ccc}
i & j & k \\
\frac{\partial \phi}{\partial x} & \frac{\partial \phi}{\partial y} & \frac{\partial \phi}{\partial z} \\
A_{1} & A_{2} & A_{3}
\end{array}\right|+\phi\left|\begin{array}{ccc}
i & j & k \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
A_{1} & A_{2} & A_{3}
\end{array}\right| \\
\therefore \quad & \nabla \mathbf{x}(\phi \mathbf{A})=(\nabla \phi) \mathbf{x A}+\phi(\nabla \times \mathbf{A})
\end{array}
$$

