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Don’t have a proof. 
[bookmark: _GoBack]Can you prove this last proposition? Not sure what the methods of 5.4 are but they introduce the bivariate distribution there at least. This should be the 5.4 chapter. I just added it in case you wanted to look through it. But it is up to you if you want to look through it or not. I just need the proof for the last proposition above about U and V.
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The expression inside the braces is a linear combination of the variables ¥, = (X ; -

U Y o= (X o=@ 2% and ¥ 5=(X ; - i )(X 5 - 1 ), 50 carrying the E operation
through to the three terms gives aiV(X1) + aiV(X2) + 2a10:Cov(X1, X2) as required.
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The previous proposition has a generalization to the case of two linear
combinations:

PROPOSITION
Let U and V be linear combinations of the independent normal rv's X ;, X 5, .., X ;.

Then the joint distribution of U and V'is bivariate normal. The converse is also true: if
U and V have a bivariate normal distribution then they can be expressed as linear
combinations of independent normal rv’s.
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The proof uses the methods of Section 5.4 together with a little matrix theory.
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5.4 Conditional Distributions

The distribution of Y can depend strongly on the value of another variable X. For
example, if X is height and Y is weight, the distribution of weight for men who are 6 ft
tall is very different from the distribution of weight for short men. The conditional
distribution of Y given X = x describes for each possible x how probability is
distributed over the set of possible y values. We define the conditional distribution of
Y given X, but the conditional distribution of X given Y can be obtained by just
reversing the roles of X and Y. Both definitions are analogous to that of the conditional
probability P(A|B) as the ratio P(ANB)/P(B).
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DEFINITION

Let X and Y be two discrete random variables with joint pmf p(x,y) and marginal X pmf
p x (). Then for any x value such that p x (x) > 0, the conditional probability mass
function of Ygiven X = x is

pyix(ylz)





image11.png
An analogous formula holds in the continuous case. Let X and Y be two continuous
random variables with joint pdf f{(x,y) and marginal X pdf f x (x). Then for any x value
such that f x (x) > o, the conditional probability density function of Y given X
=xis

x(ylz) = 7=
Frix(vlz) o)
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Example 5.18

For a discrete example, reconsider Example 5.1, where X represents the deductible
amount on an automobile policy and Y represents the deductible amount on a
homeowner’s policy. Here is the joint distribution again.

v
|p(x, y) 0 100|200
lx/100 |.20|.10 |.20

250 |.05/.15 |-30

The distribution of Y depends on X. In particular, let's find the conditional
probability that Y is 200, given that X is 250, using the definition of conditional
probability from Section 2.4.
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P(Y =200 and X =250) _ 3 _6
P(X =250) T 05+.15+3

200|X =250) =

With our new definition we obtain the same result

Py (200]250)

The conditional probabilities for the two other possible values of Y are

#2500 _ o5 .
o (50) = T 505
Si%s0.100 i
(0 = T IS

(0]250)
Py1x(100]250)

w

Thus, »vix(0]250) + prjx (100]250) + prjx (200[250) = 1+ .3+ 6 =1. This is no coincidence;
conditional probabilities satisfy the properties of ordinary probabilities. They are
nonnegative and they sum to 1. Essentially, the denominator in the definition of
conditional probability is designed to make the total be 1.

Reversing the roles of X and Y, we find the conditional probabilities for X, given
thatY'=o:

(100,0) 0 _ g
20+.05

pxpy(100[0) =
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2(250,0)
pyll)

05
20 +.05

pxpy(250[0) =

Again, the conditional probabilities add to 1.
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Example 5.19

For a continuous example, recall Example 5.5, where X is the weight of almonds and
Y is the weight of cashews in a can of mixed nuts. The sum of X + Y is at most one
pound, the total weight of the can of nuts. The joint pdf of X and Y'is

o _[2ay  0Sz<1,0<y<lz+y<1
f@v =1, ctherwise
In Example 5.5 it was shown that
o [12(1-2f 0Sz<1
Fxlz) = { 0 otherwise
The conditional pdf of Y given that X = xis
flzy) _

) 2z(1-2) (1-z)

Uay

Frix(ylz) =

This can be used to get conditional probabilities for Y. For example,
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P s 0% = 9= [ pstols)dy =

Recall that X is the weight of almonds and Y is the weight of cashews, so this says

that, given that the weight of almonds is.5 pound, the probability is.25 for the weight
of cashews to be less than.25 pound.

Just as in the discrete case, the conditional distribution assigns a total probability

of 1to the set of all possible Y values. That is, integrating the conditional density over
its set of possible values should yield 1:

-
[ ptinan= [ -
- b

Whenever you calculate a conditional density, we recommend doing this
integration as a validity check.
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Because the conditional distribution is a valid probability distribution, it makes sense
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to define the conditional mean and variance.

DEFINITION
Let X and Y be two discrete random variables with conditional probability mass
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function p yx (y|x). Then the conditional mean or expected value of Y given

that X = xis trix— = EYIX =2) = T ypnx(ulo)
yEby

An analogous formula holds in the continuous case. Let X and Y be two continuous
random variables with conditional probability density function fyx (y|x). Then

prime =BV =)= [y ety

The conditional mean of any function g(Y) can be obtained similarly. In the discrete

=Y 9@l

veDy

In the continuous case

E(q(

== [ o) frstolz)dy
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The conditional variance of Y given X = xis

hxe =V (VX =) = E{I¥ — EQ|X =2 IX
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There is a shortcut formula for the conditional variance analogous to that for W(Y)
itself:

Gy =VIYIX = 2) = EQ*|X =2) — gy,
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Example 5.20
Having found the conditional distribution of ¥ given X = 250 in Example 5.18, we
compute the conditional mean and variance.

prpx-mso = E (V|X =250) = Opyx (0]250) + 100pyx (100[250)
+200py|x (200[250) = 0(.1) + 100 (.3) +200(.6) = 150.

Given that the possibilities for Y are 0, 100, and 200 and most of the probability
is on 100 and 200, it is reasonable that the conditional mean should be between 100
and 200.

Let’s use the alternative formula for the conditional variance.

(100]250) + 200%py-1x (200]250)

(VX =250) = E ()X = 250) — g3 ,000 — 150° = 4500.
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250

Taking the square root, we get ovix- 7.08_ which is in the right ballpark when
we recall that the possible values of Yare 0, 100, and 200.

It is important to realize that E(Y|X = x) is one particular possible value of a
random variable E(Y|X), which is a function of X. Similarly, the conditional variance
V(Y|X = x) is a value of the rv V(Y|X). The value of X might be 100 or 250. So far, we
have just E(Y|X = 250) = 150 and V(Y|X = 250) = 4500. If the calculations are
repeated for X = 100, the results are E(Y|X = 100) = 100 and V(Y|X = 100) = 8000.
Here is a summary in the form of a table:

k PX=0EXX=0)VEX-=2)
100.5 100 8000
250|.5 150 4500
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Similarly, the conditional mean and variance of X can be computed for specific Y.
Taking the conditional probabilities from Example 5.18,
pxjy—o = E (X[|Y = 0) = 100pxy (100]0) + 250p.x1y- (250]0)
=100(.8) +250(.2)
o = VXY O‘):E([X—E(X\Y:O‘)]:\Y:O)
= (100 — 130)*pxpy- (100]0) + (250 — 130)°pxpy-(250]0)
=30°(8) +120° 3600.

Similar calculations give the other entries in this table:
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ly [PV = Y EIY = ) V(X|Y = )
o

.25 130 13600
100 .25 190 5400
200.50 190 5400

Again, the conditional mean and variance are random because they depend on
the random value of Y.
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Example 5.21 (Example 5.19 continued)
For any given weight of almonds, let’s find the expected weight of cashews. Using the
definition of conditional mean,

= E(YVIX =) = [Z,v frix(vle) dy = [ 7y g2 dy

0=z=1

vy

The conditional mean is a linear decreasing function of x. When there are more
almonds, we expect less cashews. This is in accord with Figure 5.2, which shows that
for large X the domain of Y is restricted to small values. To get the corresponding
variance, compute first

L=z’

E(|X =2)= / ¥ feyxlol) dy
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Then the conditional variance is

=V({|X=z)=E (yl\x =1z) *#qu-; =

and the conditional standard deviation is

o¥x-

This says that the variance gets smaller as the weight of almonds approaches 1.
Does this make sense? When the weight of almonds is 1, the weight of cashews is
guaranteed to be o, implying that the variance is o. This is clarified by Figure 5.2,
which shows that the set of y-values narrows to o as x approaches 1.
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Independence

Recall that in Section 5.1 two random variables were defined to be independent if their
joint pmf or pdf factors into the product of the marginal pmf’s or pdfs. We can
understand this definition better with the help of conditional distributions. For
example, suppose there is independence in the discrete case. Then
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- =pr(v)
rx(z)

That is, independence implies that the conditional distribution of Yis the same as
the unconditional distribution. The implication works in the other direction, too. If

pyix(ylz) =pv(y)

s0

»(z,9)=ps




image30.png
and therefore X and Y are independent. Is this intuitively reasonable? Yes, because
independence means that knowing X does not change our probabilities for Y.

In Example 5.7 we said that independence necessitates the region of positive
density being a rectangle (possibly infinite in extent). In terms of conditional
distribution this region tells us the domain of Y for each X. For independence we need
to have the domain of ¥ not be dependent on X. That is, the conditional distributions
must all be the same, so the interval of positive density must be the same for each x,
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implying a rectangular region.

The Bivariate Normal Distribution

Perhaps the most useful example of a joint distribution is the bivariate normal.

Although the formula may seem rather messy, it is based on a simple quadratic
expression in the standardized variables (subtract the mean and then divide by the
standard deviation). The bivariate normal density is

Flz,y) = e It O )

o103/ — 0

There are five parameters, including the mean y ; and the standard deviation o ; of
X and the mean u , and the standard deviation o , of Y. The fifth parameter p is the
correlation between X and Y. The integration required to do bivariate normal
probability calculations is quite difficult. Computer code is available for calculating P(X
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< x, Y < y) approximately using numerical integration, and some statistical software
packages (e.g., R, SAS, Stata) include this feature.

What does the density look like when plotted as a function of x and y? If we set f(x,
y) to a constant to investigate the contours, this is setting the exponent to a constant,
and it will give ellipses centered at (x, y) = (i 4, i ). That is, all of the contours are
concentric ellipses. The plot in three dimensions looks like a mountain with elliptical
cross-sections. The vertical cross-sections are all proportional to normal densities. See
Figure 5.6.

St

Figure 5.6 A graph of the bivariate normal pdf
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If p = o, then f(z)=fx(z) f+(v), where X is normal with mean y ; and
standard deviation o y, and Y'is normal with mean y , and standard deviation o
». Thatis, X and Y have independent normal distributions. In this case the plot
in three dimensions has elliptical contours that reduce to circles. Recall that in
Section 5.2 we emphasized that independence of X and Y implies p = o but, in
general, p = 0 does not imply independence. However, we have just seen that
when X and Y are bivariate normal p = o does imply independence. Therefore,
in the bivariate normal case p = 0 if and only if the two rv’s are independent.

What do we get for the marginal distributions? As you might guess, the
marginal distribution f x (x) is just a normal distribution with mean u , and
standard deviation o ,:
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a1
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The integration to show this [integrating f{x,y) on y from - to ] is rather
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messy.
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More generally, any linear combination of the form aX + bY, where a
and b are constants, is normally distributed.
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We get the conditional density by dividing the marginal density of X into
fix,y). Unfortunately, the algebra is again a mess, but the result is fairly simple.
The conditional density f y|x (y[x) is a normal density with mean and variance
given by

-
a1

1) = E(V|X = 2) = pia + pon

xme =V (VX = 2) = 03(1—p")

Notice that the conditional mean is a linear function of x and the conditional
variance doesn’'t depend on x at all. When p = o, the conditional mean is the
mean of Yand the conditional variance is just the variance of Y. In other words,
if p = 0, then the conditional distribution of Y is the same as the unconditional
distribution of Y. This says that if p = o then X and Y are independent, but we

already saw that previously in terms of the factorization of f(x,y) into the
product of the marginal densities.
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When p is close to 1 or -1 the conditional variance will be much smaller than
V(Y), which says that knowledge of X will be very helpful in predicting Y. If p is
near o then X and Y are nearly independent and knowledge of X is not very
useful in predicting Y.
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Example 5.22

Let X be mother’s height and Y be daughter’s height. A similar situation was
one of the first applications of the bivariate normal distribution, by Francis
Galton in 1886, and the data was found to fit the distribution very well.
Suppose a bivariate normal distribution with mean x ; = 64 in. and standard
deviation ¢ ; = 3 in. for X and mean u , = 65 in. and standard deviation o , =
3in. for Y. Here y1 5 > 11 4, which is in accord with the increase in height from
one generation to the next. Assume p =.4. Then

=65+ 4(z— 64) = 4z + 304
(1— 4) =756 and o315 = 2.75

Notice that the conditional variance is 16% less than the variance of Y.

Squaring the correlation gives the percentage by which the conditional
varjance is reduced relative to the variance of Y.
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Regression to the Mean
The formula for the conditional mean can be re-expressed as

g T

a1

In words, when the formula is expressed in terms of standardized variables,
the standardized conditional mean is just p times the standardized x. In
particular, for the example of heights,

P =6 zo6
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If the mother is 5 in. above the mean of 64 in. for mothers, then the
daughter’s conditional expected height is just 2 in. above the mean for
daughters. In this example, with equal standard deviations for Y and X, the
daughter’s conditional expected height is always closer to its mean than the
mother’s height is to its mean. In general, the conditional expected Y'is closer
when it is measured in terms of standard deviations. One can think of the
conditional expectation as being pulled back toward the mean, and that is why
Galton called this regression to the mean.

Regression to the mean occurs in many contexts. For example, let X be a
baseball player’s average for the first half of the season and let Ybe the average
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baseball player’s average for the first half of the season and let Ybe the average
for the second half. Most of the players with a high X (above.300) will not have
such a high Y. The same kind of reasoning applies to the “sophomore jinx,”
which says that if a player has a very good first season, then the player is
unlikely to do as well in the second season.

The Mean and Variance Via the Conditional Mean and
Variance

From the conditional mean we can obtain the mean of Y. From the conditional
mean and the conditional variance, the variance of Y can be obtained. The
following theorem uses the idea that the conditional mean and variance are
themselves random variables, as illustrated in the tables of Example 5.20.

THEOREM

a. E(Y)=E[E(Y]X)]

=V I[E(YIX)]+E[V (V]X)]
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The result in (a) says that E(Y) is a weighted average of the conditional
means E(Y|X = x), where the weights are given by the pmf or pdf of X. We give
the proof of just part (a) in the discrete case:
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T X v

v T Ay = T ver(y) =E(Y)
Bx =

ylz)es
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The Case of Normal Random Variables

When the X ;’s form a random sample from a normal distribution, x and T , are both
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Example 5.23

To try to get a feel for the theorem, let’s apply it to Example 5.20. Here again
is the table for the conditional mean and variance of Y given X.

k PX=0EXX=0)VEX-=2)

100|.5 100 8000

250|.5 150 4500
Compute

E[Eu 1X)] = Eu \X =100) P(X =100)+ E(Y| X =250) P(X = 250)
125

Compare this with E(Y) computed directly:
E(Y)= 0P(Y =0)+100P(Y = 100) + 200P (Y = 200)
(. (25) 125

For the variance first compute the mean of the conditional variance:
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E[V(Y]X)]= V(Y|X =100) P(X =100) + V(Y|X = 250) P (X = 250)
= 4500(.5) + 8000 (.5) = 6250

Then comes the variance of the conditional mean. We have already
computed the mean of this random variable to be 125. The variance is

V [E(Y]X)] = 5(100 — 125)° +.5(150 — 125)

625

Finally, do the sum in part (b) of the theorem:
VI[E(Y|X)]+ E[V(Y|X)] =625+ 6250 = 6875

To compare this with V(Y) calculated from the pmf of ¥, compute first

E (YY) = 0*P(Y =0)+100°P (Y =100) + 200°P (Y = 200)
= 0(.25) + 10,000 (.25) + 40, 000 (.5) 500

Thus,
calculation based on the theorem.

(Y)=E (Y?) - [E(Y)] = 22,500~ 125" =687 in agreement with the
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Here is an example where the theorem is helpful in finding the mean and
variance of a random variable that is neither discrete nor continuous.

| Example 5.24
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The probability of a claim being filed on an insurance policy is.1, and only one
claim can be filed. If a claim is filed, the amount is exponentially distributed
with mean $1000. Recall from Section 4.4 that the mean and standard
deviation of the exponential distribution are the same, so the variance is the
square of this value. We want to find the mean and variance of the amount
paid. Let X be the number of claims (0 or 1) and let Y be the payment. We
know that E(Y] X = 0) = 0 and E(Y| X = 1) = 1000. Also, V(Y| X = 0) = 0 and
V(Y|X = 1) = 10002 = 1,000,000. Here is a table for the distribution of E(Y|X
=x)and V(Y[X =x):

K PX = ) E(Y|X = 0)[V(YX = x)
0|.9 o o
1.1 1000 1,000,000
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Therefore,

EY)=E[E{Y|X)=E(Y|X=0P(X=0)+E(Y|X =1)P(X =1)=0(.9)+1000(.1) = 100

The variance of the conditional mean is

VIE(Y|X)] = .9(0 — 100)* + .1(1000 — 100)

= 90,000

The expected value of the conditional variance is
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E[V(Y]X)] =.9(0) +.1(1,000,000) = 100,000

Finally, use part (b) of the theorem to get V(Y):
=V [E(Y]X)]+ E[V (Y]X)] = 90,000 + 100,000 = 190,000

Taking the square root gives the standard deviation, o y = $435.89.

Suppose that we want to compute the mean and variance of Y directly.
Notice that X is discrete, but the conditional distribution of Y given X = 1is
continuous. The random variable Y itself is neither discrete nor continuous,
because it has probability.9 of being o, but the other.1 of its probability is
spread out from o to ®. Such “mixed” distributions may require a little extra
effort to evaluate means and variances, although it is not especially hard in
this case. Compute

e [
=E(Y)=( 1)/ Y50 ~v/100 4y = (.1)(1000) = 100
o

These agree with what we found using the theorem.
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normally distributed. Here is a more general result concerning linear combinations.
The proof will be given toward the end of the section.

PROPOSITION

IfX,, X, ..., X are independent, normally distributed rv’s (with possibly different
means and/or variances), then any linear combination of the X ;s also has a normal
distribution. In particular, the difference X ; — X , between two independent, normally
distributed variables is itself normally distributed.
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Example 6.15 (Example 6.12 continued)
The total revenue from the sale of the three grades of gasoline on a particular day

was Y=3.5X ;+3.65X »+3.8X 5, and we calculated u y =6465 and (assuming
independence) o y =493.83. If the X ;s are normally distributed, the probability that

revenue exceeds 5000 is

P(Y >5000) = P (Z > 80=08) — P(Z > —2.967)
=1— $(—2.967) = .0085

The CLT can also be generalized so it applies to certain linear combinations. Roughly
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speaking, if n is large and no individual term is likely to contribute too much to the
overall value, then Y has approximately a normal distribution.

Proofs for the Case n=2

For the result concerning expected values, suppose that X ; and X , are continuous
with joint pdf f{(x 4, x 5). Then

E(a:X1 + a:X:
=a [T [omnf
=a[2 nifa(zn) dnta [0z
=aE(X1) + a2 (.

S 2 (arza + @) f (1, 72) dy dy
,2) dzy dzy
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Summation replaces integration in the discrete case. The argument for the variance
result does not require specifying whether either variable is discrete or continuous.

Recalling that V(Y) = E[(Y — it y)?],

= E{[as Xy + a:Xa — (aspes + agpea)'}
= E{af(Xy — 1)’ + a3(Xz — p2)? + 2a305(Xy — o)Xz — )}

V(a1 X1+ as.





