$f(x ; \lambda)=\lambda e^{-\lambda x}$.
$F(x ; \lambda)=1-e^{-\lambda x} \operatorname{og} F^{-1}(u)=-\lambda^{-1} \log (1-u)$.

Generate

$u \sim \operatorname{Uniform}[0,1]$.

$$
x=-\lambda^{-1} \log (1-u)
$$

We simulate the x 's and get

We see that the pdf of F, f has the same shape as the simulated x 's. In general this seems to be the approach

We have the cdf, F :

$$
F(x)
$$

We find the inverse:

$$
F^{-1}
$$

We simulate the x 's from the inverse and get that

$$
F^{-1}=f(x)
$$

I need a mathematical proof for this? For why this is approximately right. I only want a mathematical proof and if it is an approximation please a proof for why the approximation holds. The link above explains this theorem in general I believe. I specifically need to emphasize the part of the proof for why this manipulation of F gives values that is along the $p d f, f$, of $c d f, F$ because this is my main problem.

1.1 Examples

The inverse transform method can be used in practice as long as we are able to get an explicit formula for $F^{-1}(y)$ in closed form. We illustrate with some examples. We use the notation $U \sim$ unif $(0,1)$ to denote that U is a rv with the continuous uniform distribution over the interval $(0,1)$.

1. Exponential distribution: $F(x)=1-e^{-\lambda x}, x \geq 0$, where $\lambda>0$ is a constant. Solving the equation $y=1-e^{-\lambda x}$ for x in terms of $y \in(0,1)$ yields $x=F^{-1}(y)=-(1 / \lambda) \ln (1-y)$. This yields $X=-(1 / \lambda) \ln (1-U)$. But (as is easily checked) $1-U \sim u n i f(0,1)$ since $U \sim \operatorname{unif}(0,1)$ and thus we can simplify the algorithm by replacing $1-U$ by U :
