Below R stands for the field of real numbers, C stands for the field of complex numbers.

1. Let T be a linear transformation from the set $P_{2}(R)$ of all polynomials of degree at most 2 into itself, $T: P_{2}(R) \rightarrow P_{2}(R)$, given by

$$
T(f)=f^{\prime}-f^{\prime \prime}, \quad f \in P_{2}(R)
$$

where f^{\prime} is the first and $f^{\prime \prime}$ is the second derivative of f.
(a) Find the null space $N(T)$ of T. What is the dimension of $N(T)$.
(b) Find the matrix representation $[T]_{\varepsilon}$ of T in the basis below

$$
\varepsilon=\left\{e_{1}(x)=1, e_{2}(x)=x, e_{3}(x)=x^{2}\right\} .
$$

2. Let $A=\left[\begin{array}{cc}2 & 0 \\ 1 & -3\end{array}\right]$
(a) Find a characteristic polynomial $f(t)=\operatorname{det}(A-t I)$.
(b) Find the eigenvalues and corresponding eigenvectors of A.
(c) Is A diagonalizable? Justify your answer by citing a proper theorem.
(d) Find an invertible matrix Q such that $D=Q^{-1} A Q$ is diagonal.
3. Let $w_{1}=\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]$ and $w_{2}=\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right], \quad w_{1}, w_{2} \in R^{3}$.
(a) Use Gram-Schmidt process to orthogonalize, and then to orthonormalize, the vectors w_{1}, w_{2}.
(b) Let $W=\operatorname{span}\left\{w_{1}, w_{2}\right\}$. Find the orthogonal projection of $y=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$ onto W.
