1. If air resistance is proportional to the square of the instantaneous velocity, then the velocity v of a mass m dropped from a given height is determined from
$m \frac{d v}{d t}=m g-k v^{2}, k>0$.
Let:
$v(0)=0, k=0.125, m=5$ slugs, and $g=32 \mathrm{ft} / \mathrm{s}^{2}$.
(a) Use a fourth-order Runge-Kutta (RK4) method with $h=1$ to approximate the velocity $v(5)$.
(b) Use Excel to graph the solution of the IVP on the interval [0, 6].
(c) Use separation of variables to solve the IVP and then find the actual value.
2. Find the analytic solution of the initial-value problem (IVP)
$y^{\prime}=-y+10 \sin (3 x), y(0)=0$, on the interval $[0,2]$.
(a) Graph the solution and find its positive roots.
(b) Use Runge-Kutta (RK4) method with $h=0.1$ to approximate a solution of the initial-value problem (IVP) $y^{\prime}=-y+10 \sin (3 x), y(0)=0$.
