Weak Acid-Strong Base Titrations

Consider the neutralization reaction between acetic acid (a weak acid) and sodium hydroxide (a strong base):

$$
\mathrm{CH}_{3} \mathrm{COOH}(a q)+\mathrm{NaOH}(a q) \longrightarrow \mathrm{CH}_{3} \mathrm{COONa}(a q)+\mathrm{H}_{2} \mathrm{O}(l)
$$

This equation can be simplified to

$$
\mathrm{CH}_{3} \mathrm{COOH}(a q)+\mathrm{OH}^{-}(a q) \longrightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l)
$$

How can one use the equilibriums below to show mathematically by using equilibrium constants that the reaction between OH^{-}and the weak acid goes only to the right?

$$
\left[O H^{-}\right]\left[H^{+}\right]=10^{-14} \quad K_{a}=\frac{\left[A^{-}\right]\left[H^{+}\right]}{[H A]}
$$

If there are any other equilibrium constant needed in addition to prove this please use them and explain them

