1. Six-coordinate $\mathrm{Cr}(\mathrm{III})$ complexes of the type trans- $\left[\mathrm{CrL}_{4} \mathrm{~A}_{2}\right]^{\mathrm{nt}}$ generally have magnetic moments consistent with three unpaired electrons, which suggests occupancy of the d orbitals as shown to the right. In principle, a complex with only one unpaired electron could be generated by a suitable choice of L and A such that the separation between the d_{xy} and the degenerate $d_{\mathrm{xz}}, d_{\mathrm{yz}}$ orbitals becomes larger than
 the spin pairing energy.

Assume that L is a σ-donor only ligand. Would strong π donors OR strong π acceptors be the best choice for axial ligand A in order to increase the separation of the d_{xy} and the degenerate d_{xz}, $d_{y z}$ orbitals? Explain the basis for your choice being careful to: 1) explicitly indicate the relative energies of the metal and ligand π orbitals and 2) explicitly indicate the specific ligand orbitalmetal orbital interactions that will influence the relative energies of the d_{xy} and the degenerate $d_{\mathrm{xz}}, d_{\mathrm{yz}}$ orbitals.

