4. Circle the letter corresponding to the correct answer for the following.

For which of the following complexes can a tetrahedral coordination geometry be unequivocally excluded based upon its magnetic properties?

- a) Cu(PPh₃)₃Cl (diamagnetic)
- b) Pt(PPh₃)₂Cl₂ (diamagnetic)
- c) Ni(PPh₃)₂Br₂ (paramagnetic)
- d) Co(PPh₃)₂Cl₂ (paramagnetic)

Which ion will undergo the greatest change in bond distance upon one-electron oxidation? (l.s. = low spin; h.s. = high spin)

- a) h.s. $[Cr(OH_2)_6]^{2+}$ b) $[V(OH_2)_6]^{2+}$ c) l.s. $[Ru(OH_2)_6]^{2+}$ d) l.s. $[Ir(OH_2)_6]^{3+}$

For which of the following compounds is the absorptivity of a 0.1 M solution expected to be lowest?

- a) $[Mn(OH_2)_6]^{3+}$
- b) $[Fe(OH_2)_6]^{3+}$ c) $[Mn(CN)_6]^{3-}$ d) $[Fe(CN)_6]^{3-}$

Which of the following reactions will have the largest equilibrium constant? dien = H2NCH2CH2NHCH2CH2NH2

- a) $[Ni(OH_2)_6]^{2+} + 6 NH_3 = [Ni(NH_3)_6]^{2+} + 6 H_2O$ b) $[Ni(OH_2)_6]^{2+} + 2 dien = [Ni(dien)_2]^{2+} + 6 H_2O$ c) $[Ni(NH_3)_6]^{2+} + 2 dien = [Ni(dien)_2]^{2+} + 6 NH_3$

- d) b & c are the same since the chelate effect is operative in both

The complex cations $[Co(NH_3)_5(NCS)]^{2+}$, and $[Co(NH_3)_5(SCN)]^{2+}$ are what type of isomers?

- a) diastereomers
- b) structural c) linkage
- d) ionization e) b & c

As a ligand to transition metal ions, O^{2-} (oxide ion) is

- a) a σ donor only
- b) a σ donor and π donor
- c) a σ donor and π acceptor
- d) uses vacant p orbitals for its π acceptor interactions
- e) uses filled p orbitals for its π donor interactions
- f)c&d
- g) b & e

Which of the following complexes contain d² metal ions (circle all correct answers)?

- a) [Re₂Cl₄(dppe)₂] (dppe is Me₂PCH₂CH₂PMe₂ a bidentate ligand, which, in this case connects the two metals across the metal-metal bond)
- b) $[V(O)(acac)_4]$
- c) $[Os(O)_2Cl_4]^{2}$
- d) $[Ti(OH_2)_4Cl_2]$
- e) [Re₂Cl₈]³